Shining a light on species delimitation in the tree genus Engelhardia Leschenault ex Blume (Juglandaceae)

Can-Yu Zhang, Shook Ling Low, Yi-Gang Song, Nuraini, Gregor Kozlowski, Truong Van Do, Lang Li, Shi-Shun Zhou, Yun-Hong Tan, Guan-Long Cao, Zhuo Zhou, Hong-Hu Meng, Jie Li

Corresponding authors at: 88 Xuefu Rd., Wuhua, Kunming, Yunnan, China.

Received 12 November 2019; Received in revised form 16 July 2020; Accepted 21 July 2020

Abstract

Enhanced efficacy in species delimitation is critically important in biology given the pending biodiversity crisis under global warming and anthropogenic activity. In particular, delineation of traditional classifications in view of the complexity of species requires an integrative approach to effectively define species boundaries, and this is a major focus of systematic biology. Here, we explored species delimitation of Engelhardia in tropical and subtropical Asia. In total, 716 individuals in 71 populations were genotyped using five chloroplast regions, one nuclear DNA region (nrITS), and 11 nuclear simple sequence repeats (nSSR). Phylogenetic trees were constructed and relationships among species were assessed. Molecular analyses were then combined with 14 morphological characteristics of 720 specimens to further explore the species boundaries of Engelhardia. Integrating phylogenetic and morphological clusters provided well-resolved relationships to delineate seven species. The results suggested that: first, that E. fenzelii, E. roxburghiana, E. hainanensis, E. apoensis, and E. serrata are distinct species; second, E. spicata var. spicata, E. spicata var. aceriflora, E. spicata var. colebrookeana, and E. rigidia should be combined under E. spicata and treated as a species complex; third, E. serrata var. cambodica should be raised to species level and named E. villosa. We illuminated that bias thresholds determining the cluster number for delimiting species boundaries were substantially reduced when morphological data were incorporated. Our results urge caution when using the concepts of subspecies and varieties in order to prevent confusion, particularly with respect to species delimitation for tropical and subtropical species. In some cases, re-rank or combining subspecies and/or varieties may enable more accurate species delimitation.

1. Introduction

Species are the fundamental units of biology, providing the most practical metric for distinguishing habitats and tracking the progress of Earth’s biodiversity (Costello et al., 2013). Therefore, effective recognition of species is the first step in the fields of phylogeny, evolution, biogeography, and biodiversity conservation (de Queiroz, 2005; Mayr, 1982). However, mistakes are inevitable when determining species, and can result in erroneous interpretations in research that uses species-based information. In particular, mistakes of plant identification in tropical regions are very common (Goodwin et al., 2015) and can adversely affect recognition and understanding of species diversity in global biodiversity hotspots. Moreover, associated biased factors may result in higher costs or unpredictable waste of effort in species and/or
biodiversity conservation (Su et al., 2015).

Indeed, previous research has emphasised that use of only a single line of evidence to delimit species may result in the detection of more or fewer species than are actually present (Edwards and Knowles, 2014). Perspectives on morphological classification are often biased by researcher preferences or weighting characteristics. Widespread species tend to be more morphologically diverse compared with narrowly endemic species, which can easily lead to more varieties (Darwin, 1859). Moreover, similar traits can appear in lineages that are not closely related owing to parallel evolution (Schluter et al., 2004), which leads to distinct lineages clustering together. Although phylogenetic analyses can substantially enhance our understanding of the relationships among species, they do not provide a complete solution to species delimitation, as the number and nature of clusters often depend on arbitrary thresholds or parameters (Posso-Terranova and Andrés, 2018). Owing to the shortcomings of using a single parameter (e.g., morphological or molecular data) to delimit species boundaries, an integrative approach should be developed as a major tool in modern systematics (Wiens, 2007). The rationale for this is that a separate and evolving metapopulation lineage is the primary property defining species, and integration of multiple operational approaches (morphology, genetics, etc.) to define and validate this property can increase the efficiency and accuracy of species delimitation greatly (de Queiroz, 2007). Recently, integrative methods, such as the multivariate clustering of morphological, genetic data, have helped define species boundaries in animals and plants (Carstens and Satler, 2013; Damasco et al., 2019; Misiewicz and Fine, 2014; Posso-Terranova and Andrés, 2018; Prata et al., 2018).

However, species delimitation within the family Juglandaceae remains a challenge, as hybridization and frequent gene flow have commonly occurred in its complex evolutionary history (Bai et al., 2014; Dong et al., 2017; Zhao et al., 2018). In particular, apparently continuous species intergradations are problematic among the well-studied temperate groups in the family (Kozlowski et al., 2018; Stone et al., 2009). Moreover, delimitation of tropical species remains daunting because of the extent of plant diversity in the tropics and the paucity of comprehensive floristic accounts (Ullso, 2017), with on average more than 50% of tropical species likely to be identified incorrectly (Goodwin et al. 2015). Thus, integrative methods and comprehensive sampling are needed to relieve the problems with the delimitation of tropical and subtropical Juglandaceae species.

Engelhardia is a genus of deciduous or evergreen trees in the walnut family (Juglandaceae) and is considered to be one of the primitive genera of the family Engelhardiaceae (Song et al., 2020). The genus occurs in tropical and subtropical East Asia, the Indo-China Peninsula, and the Malay Archipelago; while the tribe also contains Oreocharne and Alfaoro, both of which are distributed in Central America. The taxonomy and phylogeny of Engelhardia have been explored for decades, but are still subjects of disagreement (Manos and Stone, 2001; Manos et al., 2007; Stone, 2010). In particular, Engelhardia remains poorly understood due to inaccessibility of study material, large ocean separation, and vast latitudinal distribution in tropical and subtropical Asia.

A relatively comprehensive classification of the genus Engelhardia was conducted by Manning (1966) based on herbarium materials, but there was a lack of comprehensive field investigations and molecular analyses. Most of the studies related to Engelhardia have focused mainly on fossils (Hermens and Gandolfo, 2016; Manchester, 1987; Manchester et al., 1994; Meng et al., 2015), or taxonomic affinities at higher levels such as the tribe or family (Manos and Stone, 2001; Manos et al., 2007). Consequently, Flora of China (FOC) indicated that the number of species of Engelhardia is an open question and the taxonomy of the genus suffers from a lack of good specimens across its vast geographic range (Lu et al., 1999). Moreover, the taxonomy of Engelhardia is complicated further by the use of multiple synonymous names in different areas (Manning, 1966; Sidiyasa, 2015).

Additionally, previous taxonomy has been mainly focused on morphological traits such as inflorescences and leaflets, which has led to the proposal of subdivisions in Engelhardia (e.g., Manning, 1966). Five species of Engelhardia collected across the entire distribution area were identified with this focus: the widely distributed E. roxburghiana, E. spicata, and E. serrata, and the more narrowly endemic E. rígida and E. apenos. In addition, some varieties have been recognised by Jacobs (1960) and Manning (1966). The species listed in FOC are somewhat different: E. roxburghiana (including E. fenzelii), E. hainanensis, E. spicata (including E. spicata var. aceriflora, E. spicata var. colebrookeana), and E. serrata var. cambodica (Lu et al., 1999). Moreover, the taxonomic placement of E. roxburghiana is controversial, with Iljinskaya (1993) proposing that it should be considered as a new monotypic genus, Alfaropsis. However, Alfaropsis was considered to be synonymous with Engelhardia (Lu et al., 1999), and its position remains unresolved (Manos and Stone, 2001; Manos et al., 2007; Stone, 2010). It is also notable that E. roxburghiana, E. spicata, and the varieties occur in mixed communities, and there may be hybridization among them. E. apenos is probably the rarest species of Engelhardia, having been collected only 12 times, and E. serrata has included apprrently excessive numbers of varieties in previous research (Manning, 1966). These aspects of Engelhardia taxonomy also require further investigation. The characteristics and distributions of previously recognised Engelhardia taxa are provided in Table S1 and Fig S1.

Accordingly, this study aims to explore species delimitation within Engelhardia using evidence from integrative chloroplast DNA (cpDNA), nuclear ribosomal DNA (nrDNA), nuclear simple sequence repeats (nSSR) analyses, and morphology across its entire geographic distribution in tropical and subtropical Asia. Our results enabled us to: (1) provide insight into species concepts and delimitation within Engelhardia; (2) explore integrative approaches, particularly methods involving integrating molecular and morphological data to define species boundaries; and (3) reveal how many species within Engelhardia.

2. Materials and methods

2.1. Sample collection

Sampling was undertaken for Engelhardia taxa recognised by Manning (1966), the FOC (Keren and Lu, 1979; Lu et al., 1999), Flora Malesian (Jacobs, 1960), and websites such as the CVH (Chinese Virtual Herbarium: http://www.cvh.ac.cn/class), POWO (Plants of the World Online: http://powo.science.kew.org), Tropicos (http://www.tropicos.org), and the GBIF (Global Biodiversity Information Facility: https://www.gbif.org). A total of 716 individuals of Engelhardia were collected from 71 populations, representing ten taxa from across tropical and subtropical Asia (Fig. 1, see Table S2 for the geographic coordinates). Our sampling scale covered almost the entire distribution of Engelhardia from south of the Yangtze River to Indonesia. However, we did not sample from Nepal, the Philippines, the Malay Peninsula, and New Guinea. The nrDNA and cpDNA sequence variation and nSSR analyses were performed using genetic materials from each sample collected.

2.2. DNA fragments and nSSR sequenced

Total genomic DNA was extracted using a Plant Genomic DNA Kit (Tiangen Biotech, China). Five cpDNA regions (psbA-trnH, trnL-trnF, rps16, trnS-trnG, and trnL2-trnL) and the nrITS region, were sequenced (Table S3). In addition, 11 selected nSSR loci were amplified: HQ23, HQ49, HQ54, HQ89, JCl4833, JCl5776, WGA27, WGA79, WGA089, WGA202, and WGA321. Detailed information on lab protocols is provided in Table S4. All targeted chloroplast sequences were concatenated and edited manually using Geneious v6.1.2 (https://www.geneious.com/).

2.3. Network and phylogenetic analyses of DNA sequences

The combined cpDNA haplotypes (H) and nrDNA ribotypes (R) were analysed using DNASP v6 (Rozas et al., 2017), with the lineage
relationships between the haplotypes and ribotypes inferred by median-
joining network as implemented in NETWORK v2.0 (Bandelt et al.,
1999) and Splits Tree v4.14.8 (Huson and Bryant, 2006). Both plastid
DNA and ITS data sets were subjected to Bayesian analyses using
MrBayes v3.1.2 (Huelsenbeck and Ronquist, 2001), and maximum-
likelihood (ML) analyses were performed in RAxML-HPC BlackBox via
the CIPRES portal (Miller et al., 2010). Following the phylogeny for
Juglandaceae, _Rhoiptelea chiliantha_ was selected as outgroup (Manos
and Stone, 2001; Manos et al., 2007). The best-fit evolutionary model
and gamma rate heterogeneity were chosen by running the datasets
using the Akaike information criterion (AIC) with PAUP* v4.0b10
(Swofford, 2002) and Modeltest v3.7 (Posada and Crandall, 1998). The
best-fit substitution models suggested that the combined cpDNA and
nrDNA data were TIM + I + G and GTR + I + G, respectively. For
Bayesian analyses, the Markov chain Monte Carlo (MCMC) algorithm
was run for 5×10^6 generations with one cold and three heated chains,
starting from random trees and sampling one out of every 500 gener-
ations. Examination of the log-likelihood values suggested that sta-
tionarity was reached in about 5×10^5 generations. For ML analyses,
the confidence levels of the nodes supporting the trees were determined
using the fast bootstrapping option with 1000 bootstrap replicates.

2.4. Neighbour-joining (NJ) phylogenetic analyses and population genetic
structure based on nSSR

Microsatellite data (nSSR) were edited and formatted in GenAlEx
v6.3 (Peakall and Smouse, 2012) (see Table S5 for the data). The
phylogenetic relationships of the sampled populations were determined
using the NJ method with Powermarker v3.25 (Liu and Muse, 2005).
Inference of genetic structure from the microsatellite data was con-
ducted with Structure v2.3 (Pritchard et al., 2003). The simulation was
run with a cluster number (K) ranging from 1 to 20 for each set. Each
run consisted of a burn-in of 2×10^4 iterations, followed by 10^5
iterations. Results and convergence of the MCMC procedure were
subject to repeated testing by carrying out a series of 10 replicate runs
for each K-prior value. The K-prior value was evaluated in log-like-
lihood form using Structure Harvester v0.6.8 (Earl and von Holdt,
2012).

2.5. Statistical analyses of morphology

Basic morphological information was also obtained by measuring
the specimens with flowers and seeds during the field survey, as well as
herbarium specimens from the herbaria (Tables S6 and S7). We first
observed and measured 25 characteristics from 720 individuals, in-
cluding 13 quantitative traits and 12 qualitative traits (Table S8), based
on important morphological features from the literature (Jacobs, 1960;
Keren and Lu, 1979; Lu et al., 1999; Manning, 1966; Manos and Stone,
2001; Stone, 2010). To determine which traits provided useful in-
formation, we examined statistically significant morphological differ-
ences using AMOVA (Table S6). A total of 25 morphological char-
acteristics were used to test placement of the specimens in the
multivariate space based on Discriminant Analysis. Data collected from
the field were selected to estimate the morphological differences among

Fig. 1. (a) The geographic distribution of _Engelhardia_. A total of 71 locations were collected across tropical and subtropical Asia. (b) The blue shadows denote the entire geographic distribution areas of _Engelhardia_ (adopted from Meng et al., 2015; Manchester, 1987). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3. Results

3.1. The network and phylogeny of cpDNA haplotypes and nrDNA ribotypes

A total of 716 samples were sequenced, and we obtained 687 combined cpDNA sequences and 659 ITS sequences. The five aligned cpDNA spacers consisted of 4647 base pairs and a total of 29 haplotypes were determined from all individuals sampled (Fig. S2). The nrITS consisted of 755 base pairs and 32 ribotypes were determined (Fig. S3). All sequences are deposited in Genbank, and the accession numbers are MN307497—MN307736. The basic haplotype and ribotype information of the 71 populations is summarised in Tables S2 and S9. The relationships of E. rigidia and E. spicata varieties were more complicated than those of the other taxa (Fig. 2). The geographic distribution of cpDNA haplotypes and nrDNA ribotypes showed E. hainanensis is endemic to Hainan Island. E. fenzeli is only distributed in the southeast of China. Indonesian endemic species included E. rigidia and E. apoensis, whereas the rest of the sampled species were widespread (Figs. S2 and S3).

In general, the multi-locus DNA analyses provided a well-resolved phylogenetic backbone for the major clades of Engelharia. The topologies of the phylogenetic trees based on Bayesian and ML methods were nearly identical (Figs. 3 and S4), with no major topology conflicts between the cpDNA tree and the nrDNA tree, and the results revealed seven clades (Fig. 3). A deep split in the sample identified branches leading to subclades of E. roxburghiana and E. fenzeli as sister lineages, which was distinctive to a larger clade containing the remaining species of Engelharia. This was well supported in the ITS and cpDNA trees, supporting the subclades of E. roxburghiana and E. fenzeli as two species. The clades recovered in the ITS and cpDNA analyses indicated that E. apoensis + E. serrata var. serrata was sister taxon to E. serrata var. cambodica. In contrast, E. spicata var. spicata, E. spicata var. aceriflora, E. spicata var. celebrookeana, and E. rigidia formed a complex, intermixed clade in both analyses. In addition, E. hainanensis was a well-supported sister taxon to the E. spicata complex (Fig. 3).

3.2. Genetic clustering and structure of nSSR

The NJ tree based on 11 microsatellite loci produced similar results to the phylogenetic trees based on cpDNA and nrDNA, with seven clearly defined clades: (1) E. roxburghiana; (2) E. fenzeli; (3) E. hainanensis; (4) E. apoensis; (5) E. serrata var. serrata; (6) E. serrata var. cambodica; and (7) the E. spicata var. spicata, E. spicata var. aceriflora, E. spicata var. celebrookeana, and E. rigidia complex (Fig. 4). Uneven sampling can often lead to erroneous inferences with respect to hierarchical structure and downward-biased estimates of the true numbers of subpopulations. In particular, distinct subpopulations that have been under-sampled tend to merge together, while individuals from more extensively sampled subpopulations are generally subdivided into more clusters (Puechmaille, 2016). To avoid such errors in sampling bias and clearly identify clades for controversial species, we divided all of the populations into three groups to estimate their genetic structure. The first group included E. roxburghiana and E. fenzeli (Fig. S5 and Table S10). The second group included E. spicata var. spicata, E. spicata var. aceriflora, E. spicata var. celebrookeana, and E. rigidia (Fig. S6 and Table S10). The third group included E. hainanensis, E. apoensis, E. serrata var. serrata, and E. serrata var. cambodica (Fig. S7 and Table S10). With this division, the structure showed that E. roxburghiana and E. fenzeli were separate species with few gene mixtures between them (Fig. S5). The genetic structure of E. rigidia was identical to that of E. spicata var. spicata, E. spicata var. aceriflora, and E. spicata var. celebrookeana (Fig. S6). E. apoensis and E. serrata var. serrata showed a similar genetic structure. In contrast, E. hainanensis and E. serrata var. cambodica displayed distinctly different genetic plots (Fig. S7).

3.3. Morphological clustering

Morphological traits from 720 specimens were explored using PCA (Fig. 5a) and Discriminant Analysis (Fig. 5b). The first three principal components identified by PCA accounted for 70.55% of the variation across all characters, with the first principal components explaining 43.49% of the variation (Fig. 5a). The morphological traits aligned to the first PCA axis (with an absolute value score > 0.5) were fruit hairs, inflorescence of old/new branches, terminal/lateral inflorescences, terminal bud hairs, number of leaflets, branchlet hairs, petiole length, leaflet hairs, and leaflet arrangement. The second principal component explained 15.58% of the total morphological information and included the traits were leaflet hairs, leaflet apex, leaflet thickness, and leaflet length/width ratio. The third principal component explained 11.48% of the information and was associated with twig colour, leaflet arrangement, and leaflet margins. The PCA identified seven distinct groups from all species of Engelharia, in which all species were well-identified except for E. rigidia and three varieties of E. spicata. E. roxburghiana was most similar to, but still distinct from E. fenzeli. E. apoensis, E. serrata var. serrata, E. hainanensis, and E. serrata var. cambodica all exhibited clear species boundaries based on these morphological traits (Fig. 5a).

In Discriminant Analysis, the Group Centroid showed that the groups were separated from each other except the species of E. rigidia and three varieties of E. spicata (Fig. 5b). The analysis of these characters produced a good discriminant function, with a total of 88.0% of original grouped cases and 84.8% of cross-validated grouped cases correctly classified (Table S6).

3.4. Species tree inference

The Bayesian species delimitation analyses of the molecular data by BPP. And combined molecular and morphological data were explored by iBPP. These two methods independently gave posterior probabilities of 1.0, indicating strong support for seven species-level clades within Engelharia. Regardless of genetic data alone or combined data, the results supported (1) the separation of E. fenzeli from E. roxburghiana;
Fig. 2. Networks of Engelhardia. (a and c) Estimates from NETWORK. Each circle indicates a single haplotype and ribotype (a and b from cpDNA; c and d from nrITS) sized in proportion to its frequency. (b and d) Estimates from Splits Tree. The number of major branches showing bootstrap support values (> 90% values).
(2) the status as independent species of *E. hainanensis*, *E. apoeosis*, *E. serrata* var. *serrata*, and *E. serrata* var. *cambodica*; (3) The combination into a single species, without clear infrataxa, of the others (*E. rigida* and the three *E. spicata* varieties) (Fig. 6).

4. Discussion

4.1. Insight into species concepts and delimitation

The modern age of species concepts began with the use of the term 'concepts' to describe several different approaches to species identification (Mayr, 1942). This resulted in a long list of alternative species concepts (Hey et al., 2003). Indeed, just as there are “a thousand Hamlets in a thousand people’s eyes”, so it is with the species concepts. Recent decades have also witnessed increasing categories of species concepts and associated debates, including the biological, evolutionary, genetic, phylogenetic species concept, and many others, with Zachos (2016) reporting 32 widely recognised species concepts. Furthermore, species delimitation has been confused by a problem involving the concept of the species itself, namely that the process of speciation is continuous and will thus create inherently fuzzy boundaries, while in practice clear delineation of boundaries is required (Zachos, 2016).

If nature is discontinuous, species delimitation should be possible to identify limits between clusters of organisms once the organisms have been described as thoroughly as possible (Galtier, 2019). Therefore, using *Engelhardia* as a case for integrative approaches to species delimitation, we would expect to obtain a clearer definition of species boundaries. However, it has been argued that scientists should not confuse the detection of species with a theoretical understanding of the way in which species exist (de Queiroz, 1998, 2007). This argument points to the difficulties of studying real species, and asserts that the best understanding of species includes recognition acceptance of their indistinct nature. Consequently, it is a challenge separating detection methods from more basic ideas on the existence of species (Hey et al., 2003).
To prevent confusion and simplify classification, particularly with respect to species delimitation of tropical species, we suggest that the concept of subspecies and varieties should be used cautiously. For example, within Engelhardia, Engelhardia serrata has been attributed four varieties and Engelhardia spicata three (Manning, 1966). In contrast, our results statistically identified independent or combined lineages, according to a large number of morphological and molecular data analyses. For example, indicating the status of Engelhardia serrata var. cambodica as an independent species. Given that cryptic species are sometimes not distinguishable morphologically due to character convergence, and that more than one species may be present in a group with unclear limits between them. Our results suggest that Engelhardia rigida, and varieties of Engelhardia spicata, should be treated instead as a species complex.

In the study of plant speciation, multiple lines of evidence are typically used to re-rank ambiguous morphological variation, but rarely refer to intraspecific classification (Fong, 2010; Hu et al., 2015; Posso-Terranova and Andrés, 2018). Indeed, identifying and analysing genetic clusters is a widely accepted approach, however, whether or not they should be called species, subspecies, or populations is often considered to be an uninteresting secondary issue (Galtier, 2019). The species category is objective, whereas subspecies and varieties are not, and intraspecific classifications do not have ontological status as evolutionary units, rendering them as superfluous evolutionary research (Zachos, 2016). Accordingly, we prefer to recognise only species, or species complexes here.

4.2. Mutual utilization and promotion from morphological and molecular data

The cluster numbers of species depend on arbitrary thresholds or parameters (Posso-Terranova and Andrés, 2018). Research on Leptolalax species (Megophryidae) based on extensive geographic and taxonomic sampling showed that molecular data alone could not resolve the number of species (Chen et al., 2018). Based on the hypothetical and
simplified divergence tree presented in Fig. 7, different subdivisions of monophyletic clades can easily alter the number of species. For example, the following three taxonomic options all allow for monophyly: (1) populations A–B as one species, and populations C–G as one species, are considered as a two-species option (Fig. 7a); (2) populations A–B, population C, population D, and populations E–G representing separate species, are considered as a four-species option (Fig. 7b); and (3) if the branches A–G represent one species each, the clades would indicate a seven-species option (Fig. 7c).

Our genetic data analyses reflected the possible relationships within Engelhardia. Combining the molecular and morphological characters refined their results by suggesting species boundaries, such as *E. roxburghiana* and *E. fenzelii* separated into two lineages, while *E. spicata* varieties and *E. rigidoides* combined as a single species (Figs. 3 and 5).

These results have therefore helped to clarify an issue that has plagued species delimitation in *Engelhardia* for many years and we suggest that adopting integrated approaches from multiple-locus DNA and morphological datasets is the most efficient way to delimit the species boundaries, especially in taxa where traditional approaches have not been effective. The advantage of this approach is that the molecular data provide a basic phylogenetic framework for the recognition of lineages, while the addition of morphological data helps to further support the precision and accuracy of systematic and species delimitation.

4.3. Species delimitation in *Engelhardia*

In this study, the data from the specimens deposited in the herbaria and the large-scale field samples collected throughout the range provide more solid evidence to help resolve the species boundaries in *Engelhardia*.

Engelhardia fenzelii has been considered to be a synonym of *E. roxburghiana* (Lu et al., 1999; Manning, 1966). However, our results revealed that *E. fenzelii* should be recognised as a clearly separate species based on plastid DNA, ITS region, and nSSR data (Figs. 2–4 and 6). Furthermore, structural analysis showed two independent genetic population structures (Fig. S5), and Discriminant Analysis and PCA indicated that their morphological clusters were distinct (Fig. 5). Although both species have similar, terminal inflorescences and glabrous flowers and fruits, *E. fenzelii* possesses greyish white twigs, 1–2 pairs of leaflets, and 4 (3–6) pairs of secondary veins on each leaflet. The twigs of *E. roxburghiana* are dark brown or black, with 3–5 pairs of leaflets and 7 (5–13) pairs of secondary leaflet veins (Fig. S5; see also Keren and Lu, 1979). It is worth noting that herbarium specimens generally do not show detailed information such as colour, possibly contributing to the historical combination of these two species. Additionally, the geographical distribution of these two species does not overlap (Fig. 1); *E. fenzelii* is restricted to eastern China, while *E. roxburghiana* is distributed widely across tropical and subtropical Asia. The classification and phylogenetic relationships within the two species contributed new evidence to distinguish their close affinity, but not their identity (Figs. 2–6). Also, this study contributes new evidence to address the classification of *E. roxburghiana* (*Alfaropsis roxburghiana*). The results do expand on the phylogenetic break within the genus, and recognise two basic clades (Figs. 3, 4 and 6).

Engelhardia rigidoides shared an identical genetic structure, phylogenetic relationships, network, and morphological characteristics with *E. spicata* var. *spicata* (Figs. 2–6 and S6) and their geographic distribution overlaps (Manning, 1966). Indeed, a previous study indicated that the difference between the two species only includes the intangible lengths of fruiting catkins, the number of stamens, and monoecy vs. dioecy, which suggested that *E. spicata* and *E. rigidoides* are the same species. In addition, the specimens of *E. rigidoides* collected from New Guinea were identified as *E. spicata* (Manning, 1966). We found the only apparent differences between samples identified as *E. rigidoides* and *E. spicata* were the size of leaves, flowers and inflorescences (Fig. S6), and these differences were affected by environmental factors such as rainfall (Dudley, 1996). Therefore, we consider that *E. rigidoides* should be synonymised with *E. spicata*.

Engelhardia spicata var. *aceriflora* and *E. spicata* var. *colebrookeana* used to be considered independent species (Keren and Lu, 1979), but were subsequently maintained as varieties (e.g., Lu et al., 1999). *E. spicata* and its infrataxa exhibit highly variable, intergrading morphology without any geographical pattern, leading Jacobs (1960) to suggest that the varieties were of no taxonomic value. Similarly, both Discriminant Analysis and PCA showed that the *E. spicata* varieties are not supported by morphology (Fig. 5). The species occupies a broad range of habitats and the variation in leaflet morphology reflects this. *E.
E. spicata var. spicata is a part of evergreen forest tree communities in hilly regions, but during our fieldwork in Indonesia, we found specimens with entire adult leaflets but serrated juvenile ones, similar to those of E. serrata (Fig. S8). In addition, more hirsute leaflets of E. spicata var. colebrookeana seem to be associated with steep dry slopes on sandy soils, whereas the thick leathery leaflets of E. spicata var. aceriflora limit the evaporation of water. However, regardless of leaflet morphology, their terminal buds, inflorescences, and fruit are identical. Indeed, the present phylogenetic analyses and species tree inference suggested that all evolved recently (Figs. 3–4 and 6); and the cpDNA and nrDNA data highlight their complex genetic network (Fig. 2). The genetic structure indicates that some E. spicata var. aceriflora populations are related to either E. spicata var. colebrookeana or E. spicata var. spicata (Fig. S6). This morphological complexity seems to indicate repeated divergences with incomplete reproductive isolation and high levels of reticulate interspecific gene flow. As non-monophyly may result from hybridization, incomplete lineage sorting and/or insufficient genome sampling, we recommend that E. spicata be treated as a species complex that includes E. spicata var. aceriflora, E. spicata var. colebrookeana, and E. rigida.

Engelhardia hainanensis, E. apoensis, E. serrata var. serrata, and E. serrata var. cambodica all represent clear, separate evolutionary lineages (Figs. 2–6, Fig. S7), although E. apoensis was sister to E. serrata in the phylogenetic trees, their morphology is completely different. The leaflets of E. apoensis are large, thick, entire, lightly hirsute, oblique at the base, and similar in size on the same branch, whereas E. serrata leaflets are sub sessile, serrate, decrease in size distally, and have a lightly hirsute rachis (Lu et al., 1999; Manning, 1966). Our field observations of E. apoensis further identified additional unique characteristics, including convex scales on the leaflet surface (Figs. S1 and S7). The placement of E. apoensis with E. serrata in the analyses might reflect historical gene flow between geographically close populations, or small sample size reducing the accuracy of the phylogeny (Edwards and Knowles, 2014). Small sample size is a problem for rare species with narrow distributions (Federman et al., 2018), a distinct possibly since we only found a single population of E. apoensis with two trees, and a total of 14 trees of E. serrata in our field survey. Actually, low sample sizes have always restricted understanding of their gene phylogeny, but increasing in the number of samples may support more solid species delimitation. In this study, it is difficult to determine whether each clade represents one species in the phylogenetic trees, which are based on few samples (Fig. 7c). However, better subdivisions of monophyletic clades will increase the accuracy of species delimitation when additional samples are available (Figs. 2–4, 6) and statistically significant differences in morphologies (Fig. 5), suggesting that this variety should be reranked as a species and renamed E. villosa Kurz. (Kurz, 1877). E. villosa was treated as a synonym of E. serrata var. cambodica (Manning, 1966). According to the International Code of Nomenclature for algae, fungi, and plants (Turland et al., 2018), and the results from comprehensive analyses in this study, E. villosa should be resumed an independent species.

In summary, the genus Engelhardia contains seven genetically and morphologically supported species, i.e., E. roxburghiana, E. fenzelii, E. apoensis, the E. spicata complex, E. hainanensis, E. serrata, and E. villosa. A key to the species of Engelhardia is provided after the Conclusions section.

5. Conclusions

In recent years, modern methods for species delimitation have provided biologists with an increased ability to assess diversity more accurately. However, species delimitation still remains a challenge worldwide, especially in biodiversity hotspots such as tropical and subtropical Asia. An integrative method based on multiple-locus genetic
data and morphological analyses was used to delimit seven species within
Engelhardia. Four species (E. hainanensis, E. apoensis, E. serrata, and
E. roxburghiana) retain their current taxonomic status. E. fenzeli is
resurrected from E. roxburghiana, and E. spicata is expanded to become
a variable species complex to include E. spicata var. aceriflora, E. spicata
var. colebrookeana, and E. rigida. Finally, E. serrata var. cambodica is
re-ranked as an independent species. This study further highlights the
importance of mutual utilization and promotion of morphological and
molecular data. That is, morphological statistics can be used to solve
the problem of defining criteria suitable for evaluation within a phy-
logenetic framework without defined lineages. Also, our study suggests
that the recognition of infraspecific taxa should be done with caution in
order to simplify classifications and prevent confusion. Specifically, re-
ranking or combining subspecies and/or varieties may, in some cases,
enable more accurate species delimitation.

Key to the species of Engelhardia

1. Inflorescences lateral; pistillate flowers and at least the base of fruit hairy, typically
subsessile; bracts cover the fruit; terminal bud hirsute; leaves evergreen or dec-
iduous; leaflets serrate or entire; glabrous or hirsute, stalked or sessile.

2. Leaflets entire, lightly hirsute, elliptic at apex, oblique at base; similar leaflet size
on same branch. .. E. fenzeli

3. Leaflets entire or serrate, glabrous or hirsute, acuminate at apex, round-
ened or oblate at base; the lower leaflets reduced in size or gradually becoming
smaller.

4. Leaflets usually entire or serrate just in the sapling, somewhat variable in size and
shape, glabrous to densely hirsute, acuminate or elliptic at apex, usually the l-
ower leaflets reduced in size. .. E. spicata complex

5. Leaflets serrate, glabrous or hirsute, acuminate at apex, leaflets gradually becom-
ing smaller or lower leaflets strongly reduced in size.

6. Leaflets sessile, glabrous to slightly pubescent along midvein abaxially; lower lea-
flets strongly reduced in size; branchlet glabrous. .. E. hainanensis

5. Leaflets sessile or sub sessile; glabrous or hirsute; leaflets gradually becoming s-
maller; branchlet hirsute.

6. Leaflets glabrous, branchlet lightly hirsute; the secondary leaflet veins 7–
(6–10) pairs. .. E. serrata

6. Leaflets sessile or densely hirsute, branchlet densely hirsute; the secon-
dary leaflet veins 6 (5–10) pairs .. E. villosa

CRediT authorship contribution statement

Can-Yu Zhang: Conceptualization, Investigation, Writing - original draft, Writing - review & editing, Visualization. Shook Ling Low: Investigation, Writing - review & editing. Yi-Gang Song: Writing - review & editing. Nurainas: Investigation, Resources. Gregor Kozlowski: Writing - review & editing. Truong Van Do: Investigation, Resources. Lang Li: Investigation, Resources. Shi-Shun Zhou: Investigation, Resources. Yun-Hong Tan: Writing - review & editing. Guan-Long Cao: Investigation, Resources. Zhuo Zhou: Investigation, Resources. Hong-Hu Meng: Conceptualization, Investigation, Writing - original draft, Writing - review & editing, Supervision. Jie Li: Conceptualization, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgements

Many thanks to the following people for their kind help in this study: Dr John Conran for English language revision, Ismail, Dasriel Effendi, and Harry for assistance in the field, Dr Richard Chung-Cheng Kong for access to digital herbarium specimens, and Xiao-Long Jiang, Bin Tian, Jian-Li Zhao, Li Li, Wu-Mei Xu, Yong-Ling Yin, Xiu-Yan Feng, Hang-Hui Kong, Han-Yang Lin, Jian-Hua Xiao, Chao-Nan Cai, Zhi-Fang Liu, and Jian-Lin Hu for assistance with data collection and analysis. This work was supported by the National Natural Science Foundation of China (No. 41701056); Yunnan Fundamental Research Projects (No. 2018FY032); Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (No. Y42K111B01); Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2018432); the CAS “Light of West China” Program; and the Program of the Chinese Academy of Sciences (No. 2017XTBG-T03).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ympev.2020.106918.

References

terns of chloroplast and nuclear DNA highlight a role for pollen-mediated gene flow
in preventing population divergence in an East Asian temperate tree. Mol.

Carlsten, B.C., Saltler, J.D., 2013. The carnivorous plant described as Sarracenia alata

provide insights into unrecognized diversity and historical biogeography of Asian
162–171.

Costello, M.J., May, R.M., Stork, N.E., 2013. Can we name earth’s species before they go

Damasco, G., Daly, D.C., Vicentini, A., Fine, P.V.A., 2019. Reestablishment of Protium
cordatum (Burseraceae) based on integrative taxonomy. Taxon 68, 34–46.

Dawny, C., 1859. On the origin of species, first ed. Cambridge University Press,
Cambridge, UK.

de Queiroz, K., 1998. The general lineage concept of species, species criteria, and
the process of speciation: a conceptual unification and terminological recommendations.

Sci. USA 102, 6600–6607.

Phylogenetic resolution in Juglandaceae based on complete chloroplast genomes and nu-

Dudley, S.A., 1996. Differing selection on plant physiological traits in response to en-

Earl, D., von Holdt, B., 2012. STRUCTURE HARVESTER: a website and program for
Resour. 4, 359–361.

Edwards, D.L., Knowles, L.L., 2014. Species detection and individual assignment in spe-
cies delimitation: can integrative data increase efficacy? Proc. R. Soc. B 281,
20132765.

Federman, S., Donoghue, M.J., Daly, D.C., Eaton, D.A., 2018. Reconciling species di-

Appl. 12, 657–663.

Hermens, E., Gandolfo, M.A., 2016. Fruits of Juglandaceae from the Eocene of South

Evol. 18, 597–603.

tation in Orchispropagum (Brassicaceae) based on chloroplast and nuclear DNA
barcodes. Taxon 64, 714–726.

Li, Y.C., Wen, J., Ren, Y., Zhang, J.Q., 2019. From seven to three: Integrative species