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OPEN Characterization of the chloroplast

genome of a relict tree, Pterocarya
fraxinifolia (Juglandaceae), and its
comparative analysis
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The rare, vulnerable relict species Pterocarya fraxinifolia is among the last surviving tree species
growing in small, scattered populations in the southern Caucasus region; P. fraxinifolia grows up

to 1000 min plain forests and is threatened by habitat loss and environmental changes. Here, we
sequenced and annotated the chloroplast genome of P. fraxinifolia from Hyrcanian forests and
compared it to the chloroplast genomes of five other Pterocarya species. The evolutionary relationships
of P. fraxinifolia were subsequently evaluated using the chloroplast genomes and individual chloroplast
loci. The chloroplast genome of P. fraxinifolia was 160,086 bp in length, comprising 128 genes and a
typical quadripartite structure. A comparative analysis of the six Pterocarya species revealed limited
nucleotide diversity and structural variations in genes. The bulk of the 68 loci identified by SSR analysis
comprised A/T repeats. Codon bias analysis revealed strong purifying selection, with the ndhF gene
showing the highest Ka/Ks ratio. Our phylogenetic analysis revealed Pterocarya as a sister to the genus
Juglans and a distinct subclade within Pterocarya.
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Relict species have always excited evolutionary biologists and biogeographers who consider these species ‘living
fossils’ or relics of prehistoric periods!. These species have great value as research models for the geographical
distribution of intercontinental rifts and as species that ensure biodiversity and ecosystem balance. Relict species
also provide relevant information about the adaptation of species to specific environmental changes, as well as
the impact of climate change on the animal and plant kingdoms?®.

Hyrcanian forests are hotspots for biodiversity and are home to numerous relict species?, including 280
endemic and subendemic species’”. The genus Pterocarya Kunth (Juglandaceae), commonly referred to
as wingnuts, has a disjunct distribution in East Asia and the Caucasus region with its most recent common
ancestor present 40 Ma®. Pterocarya comprises six species, which are classified into two sections, Pterocarya (P
fraxinifolia, P. hupehensis, P. stenoptera, and P. tonkinensis) and Platyptera (P. macroptera and P. rhoifolia), on
the basis of the presence or absence of scales on the terminal buds’. P, fraxinifolia is the only species in western
Asia’®. The remaining species of Pterocarya occur in eastern Asia, such as China and Japan'!~!°. Recently, a series
of studies have focused on the phylogeny, biogeography, population genetics, and landscape genetics of species
in this genus'*!>. However, resources regarding the chloroplast genome in this genus are insufficient, and more
research is still needed.

Pterocarya fraxinifolia is a deciduous tree that can reach 20-25 m in height and 1.8 m in trunk diameter
and is wind-pollinated to produce wing-nut fruits'?. This species is among the last surviving trees growing in
small scattered populations in the southern Caucasus region, which includes northern Iran, Georgia, Armenia,
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Azerbaijan, and the Anatolian region in Turkey'>!. However, less than two decades ago, small populations were
first recorded in western Iran in the provinces of Lorestan and Ilam in the Zagros Mountains!®.

The chloroplast genome is widely used in phylogenetic studies because of its relatively conserved structure
and uniparental inheritance!>%’,. Chloroplast genomes can provide important information about the adaptation
of species to different environmental conditions*'~%*. Despite the slow evolutionary rates of chloroplast genomes,
coding and noncoding regions are useful for the identification of closely related species?2° and for detecting
genome-scale evolutionary patterns. Comparisons of the structure and sequence of these regions across
different species within a genus can reveal important evolutionary phenomena such as gene transfer, deletion, or
duplication. Recently, with the continuous application of high-throughput sequencing techniques, chloroplast
DNA sequences have become readily available!>?”28, However, there is no annotated chloroplast genome
available for P. fraxinifolia, which hinders the understanding of the evolution of the chloroplast genome of this
species from West Asia!®!®,

In this study, we aim to (1) assemble and annotate the chloroplast genome of the relict species P. fraxinifolia
from Hyrcanian forests; (2) perform comparative genomics of the chloroplast genomes of six Pterocarya species;
and (3) assess the systematic affinity of P. fraxinifolia using phylogenetic analysis of the assembled chloroplast
genomes.

17,18

Materials and methods

Leaf material for the P. fraxinifolia sample was collected from a wild population in Mazandaran, Iran (Fig. 1). The
voucher samples were deposited at the Herbarium of the Nowshahr Botanical Garden (HNBG) under voucher
number 12,876.

Genomic DNA was extracted using the CTAB method, and its quality and quantity were checked using a
Qubit 2.0 and Agilent 2100 Bioanalyzer. Libraries were created and sequenced at Wuhan Benagen Tech Solutions
Company Limited, Wuhan, China, using the DNBSEQ platform (paired-end 150 bp). SOAPnuke v1.3.0 was
used to filter the raw data, yielding 20 GB of clean data®.

Chloroplast genome assembly and annotation

Raw reads were filtered using Trimmomatic v0.39% with a quality cutoff of 15 in a 4-base sliding window;
any reads that were less than 50 bp were removed, and the adapters were filtered out. The quality of the reads
before and after trimming was tested using FASTQC v0.12.1. We used GetOrganelle®! v.1.7.7.0 for chloroplast
genome assembly, with the embplant_pt database used as a reference and maximum extension rounds of 15 (-R).
GetOrganelle produced two isomers of the whole chloroplast genome of P. fraxinifolia, and each genome had
a distinct relative orientation for the small single-copy (SSC) region®2. A Python script from GetOrganelle was
used along with Bowtie2 v2.5.4% to determine the average read coverage throughout the chloroplast genome.
GeSeq v2.03** was used for the initial chloroplast genome annotation of P. fraxinifolia, and the output from GeSeq
was imported into Geneious Prime 2025.0.3 for an additional annotation check via the “Transfer Annotation”
function. Chloroplot® was used to produce a circular representation of the plastome.

Comparative analyses of the Chloroplast genomes

Because the flanking inverted repeat (IR) regions of the chloroplast genome often vary among species, we used
CPJSdraw’® to compare the IR regions of the six species. We used CUSP from EMBOSS v6.6.0.0 to calculate
relative synonymous codon usage (RSCU) for protein-coding genes of P. fraxinifolia. To identify simple sequence
repetitions (SSR), we used a Perl script from the Microsatellite Identification tool (MISA). The settings were
adjusted to ten, five, and four repeats for mononucleotides, dinucleotides, and trinucleotides, respectively.
Forward, reverse, palindrome, and complementary sequences with a minimum repeat length of eight bp and a
maximum computed repeat of 50% were analyzed using REPuter*®. The complete chloroplast genome sequences
of the six Pterocarya species were aligned with Fast Statistical Alignment v1.15.9% to perform the nucleotide
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diversity analysis. We used a Perl script (https://github.com/xul962464/perl-Pi-nucleotide-diversity) to estimate
the nucleotide diversity (PI) with a sliding window analysis with a step size of 200 bp and a window length of
800 bp.

The selection pressure on chloroplast protein-coding genes (CDSs) was evaluated by aligning the
nonredundant genes from six species using MAFFT v7.526%. We ran ParaAT.pl v2.0* to compute synonymous
substitution rates (Ks), nonsynonymous substitution rates (Ka), and Ka/Ks. Each CDS pair of one-to-one
species combinations is used as a homolog with genetic code 11. We estimated Ka, Ks, and Ka/Ks among the six
Pterocarya species with KaKs_Calculator v2.0%1.

Phylogenetic analysis

We constructed a maximum likelihood (ML) phylogenetic tree to understand the relationships of Pterocarya
species. Chloroplast genome sequences were acquired from GenBank for the other Pterocarya and related genera
in the Juglandaceae family. The multiple sequence alignment contained a total of 21 taxa. We performed our
phylogenetic analysis using the full chloroplast genome alignment, treating it as a standard coalescent gene*!.
The chloroplast genomes were aligned using Fast Statistical Alignment v1.15.9%? and then trimmed with trimAL
v1.5" with the following settings: -automated1 -res overlap 0.7, -seqoverlap 65. To overcome the alignment
issues, we also employed TAPER v1.0.047 with the -m N -a N parameters.

Using RAXML-NG v1.2.1*, we constructed the GTR + G model and the ML tree with 500 bootstrap
repetitions. The phylogenetic tree was rooted using Engelhardia roxburghiana Wall. as an outgroup. The tree was
drawn using FigTree v1.4.4 (https://github.com/rambaut/figtree). To determine the genetic distance between
the six Pterocarya species, the HKY85 model*® was used, and a phylogenetic network was generated using the
NeighborNet approach in SplitsTree CE v6.0.0%.

Results

Chloroplast genome assembly and annotation

The total numbers of raw and trimmed reads for P. fraxinifolia in this study were 143,190,876 and 141,927,817
base pairs (bp), respectively. The number of matched mapped pairs across the chloroplast genome was
393.42+82.15 (Fig. S1). The complete chloroplast genome of P. fraxinifolia has a typical quadripartite structure
that is 160,086 bp in length with a large single-copy region (LSC) of 89,582 bp, a small single-copy region (SSC)
of 18,398 bp, and a pair of inverted repeat regions (IRs) of 26,053 bp (Fig. 2). A total of 148 genes were annotated
in the chloroplast genome of P. fraxinifolia, including 103 protein-coding genes, 37 transfer RNA (tRNA) genes,
and eight ribosomal RNA (rRNA) genes (Table 1 and Table S1). The GC content of the chloroplast genome was
36.17%. The annotated complete chloroplast genome of P. fraxinifolia was deposited in GenBank (accession
number PV791734).

Comparative analyses of the Chloroplast genome and nucleotide diversity

According to a comparative analysis of the chloroplast genomes of Pterocarya species, the locations of eight
genes in the chloroplast maps differed among species. The rps19 gene starts at position zero of the LSC region
for P, fraxinifolia, but its position has shifted three times into the IRb region in the others. However, in other
species of Pterocarya, a small portion of the genes were located in the IRb region. The ndhF gene in P. fraxinifolia,
P. stenoptera, P. macroptera, and P. rhoifolia is located inside the SSC and is 2226 bp in length, whereas in P
tonkinensis and P. hupehensis, it spans 69 and 145 bp, respectively, into the IRb region (Fig. 3a).

The average nucleotide diversity (rr) value was 0.001492, with a range of 0 to 0.00556 (Fig. 3B). The CDSs
with the highest 7 values, which were greater than 0.0031, were ndhF, infA, ycf1, rps15, and matK. The ycfl gene
is found in the SSC area, whereas ndhF, infA, rps15, and matK are found in the LSC region. Nucleotide diversity
decreased in both IR zones. Furthermore, 35 CDSs had a m value of zero among the six Pterocarya species,
indicating that they were conserved (Table SI).

Repeated sequence analysis

The six Pterocarya chloroplast genomes have an average of 72.6 SSR loci (Fig. 4A), with P. rhoifolia having the most
SSR loci (85) of the six species (Table S2). A thorough examination of the chloroplast genome of P. fraxinifolia
revealed 68 microsatellites, comprising 63 mononucleotides, four dinucleotides, and one trinucleotide simple
sequence repeat. The five types of sequence repeat motifs—forward, reverse, complementary, palindromic, and
tandem—are summarized in Table S3 and Fig. 4B. The analysis also revealed that the number of repetitive
sequences differed across the six Pterocarya chloroplast genomes. Approximately 96.82% of the mononucleotide
repeats found in P. fraxinifolia were classified as A/T (61), and 3.18% (2 repeats) were classified as C/G. In
contrast, approximately 88.2% of the repeats found in P. rhoifolia were classified as A/T (75), and 3.52% (3
repeats) were classified as C/G (Fig. 4C). Dinucleotide repeats (6) for P. rhoifolia and (4) for P. fraxinifolia were
the next most prevalent type of SSR. This investigation revealed no repeats of tetranucleotides, pentanucleotides,
or hexanucleotides.

Ka/Ks ratio and codon bias analysis

Strong purifying selection and functional limitations are indicated by the very low Ka/Ks ratios found in most
CDS regions among Pterocarya species (Fig. 5A). With the exception of P. tonkinensis and P. stenoptera, the
highest Ka/Ks ratio was detected in the chloroplast NADH dehydrogenase F (ndhF) gene. The GC contents for
the first, second, and third codon locations were 45.30%, 38.25%, and 30.36%, respectively, whereas the overall
coding GC content was 37.97%. The greatest frequencies were 42.361 for the ATT codon and 37.605 for the GAA
codon. The only two codons with an RSCU value of 1 were tryptophan (TGG) and methionine (ATG) (Fig. 5B).
Every codon ending in A or T had an RSCU value greater than 0.5.
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Fig. 2. Schematic map of overall features of the chloroplast genome of P. fraxinifolia. From the center outward,
the first track shows the small single-copy (SSC), inverted repeat (IRa and IRb), and large single-copy (LSC)
regions. The GC content along the genome is plotted on the second track. The genes are shown on the third
track. Genes are color-coded by their functional classification. The transcription directions for the inner and
outer genes are clockwise and anticlockwise, respectively. The functional classification of the genes is shown in
the bottom left corner.

Number of genes
Species Genome Size (bp) | LSC size (bp) | SSCsize (bp) | IR size (bp) | GenBank number | GC% | Total | CDS | rRNA | tRNA
P. fraxinifolia | 160,086 89,582 18,398 52,106 TBC 36.17 | 153 91 8 54
P hupehensis | 159,770 89,229 18,504 26,018 NC046431 36.24 | 137 89 8 40
P. stenoptera | 160,202 89,727 18,432 26,021 NC046428 36.17 | 137 89 8 40
P, tonkinensis | 160,096 89,600 18,481 26,007 NC046427 36.21 | 137 89 8 40
P. macroptera | 160,168 89,701 18,453 26,007 MW194257 36.17 | 136 88 8 40
P, rhoifolia 160,315 89,814 18,458 26,021 ON380923 36.15 | 138 90 8 40

Table 1. Summary of the genome of Pterocarya species.
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Fig. 3. (A) Comparisons of LSC, SSC, and IR region boundaries among six Pterocarya species; (B) Nucleotide
diversity (m) of CDS regions.

Phylogenetic analysis

The aligned multiple sequence alignment for the phylogenetic analysis consisted of 158,422 bp across 21
accessions, with 0.21% gaps and 96.19% invariant sites. The phylogenetic tree revealed Pterocarya as a sister genus
to Juglans L. with 100% bootstrap support (Fig. 6A). The ML phylogenetic tree confirmed the monophyly of the
genus Pterocarya with 100% bootstrap support with two subclades. P. fraxinifolia is a sister to a monophyletic
subclade that include P. tonkinensis and P. macroptera and a sister to another subclade that includes P. rhoifolia,
P stenoptera, and P. hupehensis. The network analysis of the six Pterocarya species revealed a topology similar to
that of the ML tree, with P. tonkinensis clustering with P. macroptera and P. rhoifolia clustering with P. stenoptera
and P, hupehensis, while P. fraxinifolia branched off independently. In this study, the efficiency of two barcode
regions, matK and ycfl, in the phylogeny of the genus Pterocarya was evaluated (Fig. 6B and C). The results
revealed that the phylogenetic tree based on the matK region was identical to the phylogenetic tree derived
from the complete chloroplast genome sequence. Pairwise distance analysis using the HKY85 method revealed
that P. fraxinifolia is distantly related to Asiatic Pterocarya species (Fig. S2). The genetic distances between P
macroptera and P. tonkinensis (0.000259) and between P. stenoptera and P. hupehensis (0.000526) were the lowest,
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Fig. 4. Analysis of perfect simple sequence repeats (SSRs) in six Pterocarya chloroplast genomes. (A) The
frequency of identified SSRs in large single-copy (LSC), inverted repeat (IR,) and small single-copy (SSC)
regions; (B) The number of SSR types detected in the nine sequenced chloroplast genomes; (C) The frequency
of identified SSR motifs in different repeat class types.
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whereas the genetic distances between P, fraxinifolia and P. hupehensis (0.002153) and between P. fraxinifolia and
P. tonkinensis (0.001928) were more than eightfold greater (Table S4). In the MatK dataset, P. fraxinifolia had
three unique character states that differentiated it from other species of Pterocarya (Table S5).

Discussion

Chloroplast genomes are useful tools for studying the evolutionary relationships among species because of their
preserved structure and uniparental inheritance (usually maternal in angiosperms*”*%. Considering mechanisms
of plant evolution*** and that the evolutionary history of chloroplasts is normally different from that of nuclear
markers®"*2, the use of genetic information from chloroplasts could reflect how seed dispersal affects the genetic
makeup of wild populations and species.

This study is the first to annotate the chloroplast genome of P. fraxinifolia and compare it to that of other
species. We found that the positions of eight markers, namely, rps19, rpl2, ycfI (IRa and IRb), ndhF, trnN, rpl2,
and trnH, varied among the six Pterocarya chloroplast genomes. This implies that the expansion and contraction
of the IR, LSC, and SSC areas are the primary sources of fluctuations in chloroplast genome size®*>*. Between
68 and 85 SSRs were found among the chloroplast genomes of the six Pterocarya species. While the number
of poly(G)/(C) repeats was shown to be greater in other angiosperms, the number of poly(A)/(T) repeats was
significantly greater in Pterocarya.

Five genes, ndhF, infA, ycf1, rps15 and matK, presented the greatest nucleotide variability (above 0.003). The
matK and ycf1 genes have been suggested to function as barcode regions in plants®®. The matK gene encodes the
maturase protein, which facilitates the splicing of group II introns in several chloroplast genes and is considered
a core barcode for land plants®®>!. The ycfI gene, which encodes the TIC214 protein that is essential for plant
viability, is the second largest in the chloroplast genome and has recently been assessed for its DNA barcoding
potential®*->2, showing higher variability than the existing chloroplast candidate barcodes (such as rbcL, matK
and trnH-psbA). Therefore, the ycfI gene might be potentially useful as a DNA barcode for the Pterocarya genus®.
With the exception of the matK region, none of the seven recommended barcode candidate genes in chloroplast
genomes® have the potential for barcoding of the Pterocarya genus because of a lack of nucleotide variation.
Surprisingly, the accuracy of the matK region in resolving the phylogeny of the genus Pterocarya was identical
to that of the complete chloroplast genome. Therefore, the matK gene alone is sufficient for reconstructing
the phylogenetic relationships within the genus Pterocarya, eliminating the need for the additional time and
financial resources required for whole-chloroplast-genome sequencing.

The genus Pterocarya consists of six species and is closely related to Juglans in terms of pollen morphology,
wood anatomy and molecular phylogenetics®®. Our phylogenetic results confirm the sister relationship of
Pterocarya to Juglans. Two sections for Pterocarya have been proposed on the basis of the presence or absence
of scales on the terminal buds*!>°, P fraxinifolia, P. hupehensis, P. stenoptera, and P. tonkinensis belong to
the section Pterocarya, while P. macroptera and P. rhoifolia belong to the section Platyptera. According to our
chloroplast genome-based phylogeny, this suggested morphological classification is not supported, and the
Caucasian wingnut (P. fraxinifolia) is in a distant subclade from the Chinese wingnut (P. stenoptera) and the
Japanese wingnut (P. rhoifolia).

The pairwise genetic distance between the Caucasian wingnut and other Asiatic Pterocarya species is greater.
This distance might reflect the prolonged isolation and considerable geographic distance between Caucasian
wingnut and East Asian species. Recent divergence time analyses based on fossil calibrations estimated the age
of P. fraxinifolia between 9.4 and 18.4 Ma from the Miocene period and suggested the westward dispersal of
Pterocarya from East Asia®. Wingnut fruit structure could facilitate the dispersal of these species by wind and
water”’. In this study, we collected P. fraxinifolia materials from its natural habitat in Hyrcanian forests. Our
initial phylogenetic results revealed that the publicly available P. fraxinifolia in GenBank (NC046430) is not a P
fraxinifolia and is most likely a misidentified voucher that could be P. stenoptera (data not shown).

Toward conservation of P. fraxinifolia

P fraxinifolia is classified as a vulnerable relict species on the IUCN Red List'?. Our phylogenetic tree, which was
constructed on the basis of chloroplast genome analysis, indicates that this species is completely distinct from
other species of the genus originating from China and Japan. This distinction might highlight the species’ unique
evolutionary path and specialized ecological environments. Recent studies have shown that the potentially
suitable ranges of P. fraxinifolia will increase under future climate scenarios®*%, and the rapid loss of its habitat,
combined with growing threats such as drought and the destruction of riparian ecosystems in Hyrcanian forests,
will result in its conservation an urgent priority.

t12

Data availability
The annotated complete chloroplast genome of P. fraxinifolia was deposited in GenBank, under accession num-
ber PV791734.1.
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