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A B S T R A C T   

The Caspian locust (Gleditsia caspica) is an endemic relict tree that occurs in Hyrcanian forests. Many of its 
habitats have been destroyed in the last half-century. This study was performed to map past geographic distri-
butions and estimate the suitable areas and potential risks of remaining populations under future climate change. 
Eight bioclimatic scenarios (one with current conditions, three with future climates, and four with past condi-
tions) were tested using the maximum entropy algorithm. The most significant factors influencing the distri-
butions of G. caspica were precipitation in the driest month and temperature seasonality. Even under the most 
optimistic model (RCP2.6), many stands of G. caspica may become endangered in the eastern and central parts of 
the range, and the distribution of this species will probably shift to the west of the Hyrcanian forest area. 
Considering the increasing destruction of habitats of this species due to human activities and the expected 
negative effects of climate change in the future, it is recommended that nature reserves be established to protect 
the habitat of G. caspica. Additionally, ex situ conservation strategies, such as storing seeds using cryopreser-
vation techniques, can ensure the long-term survival of this species in the future.   

1. Introduction 

The natural distribution and location of forest tree species are 
influenced by climatic events and anthropogenic factors, which change 
over time (Dyderski and Pawlik 2020; Roces-Díaz et al. 2018). Species 
retreat to areas with suitable macro- and microclimatic conditions, 
described as refugia, as a consequence of these complex changes 
(Stewart et al. 2010; Svenning et al. 2015). The deleterious effects of the 
intensification of environmental stresses become even more alarming 
when we account for the dynamic changes that currently occur in the 
natural ranges of endemic species and the proportion of plant species 
that may go extinct (Becklin et al. 2016; Menezes-Silva et al. 2019; 
Wiens 2016). Detailed knowledge of the distribution of a species is 
usually a prerequisite for its rehabilitation in any ecosystem and habitat 

conservation program (Yang et al. 2013; Zhang et al. 2019). Under-
standing the dispersal pattern of forest tree species in their refugia is 
important for threatened species management because this information 
is critical for planning conservation strategies or reforestation programs 
(Krebs et al. 2004; Vessella et al. 2015). 

The northern section of the Alborz Mountain range in Iran, covered 
by Hyrcanian forests, is located in the Euro-Siberian phytogeographical 
region and is one of the few remnants of natural closed-canopy decid-
uous forests in the world (Akhani 1998; Zohary 1973). Hyrcanian forests 
are known as refuges for many Arcto-Tertiary relict taxa, which are 
grouped into Hyrcanian and Euxino-Hyrcanian elements (Akhani et al. 
2010). The presence of endemic floristic elements, such as Parrotia 
persica (DC.) C.A. Mey., Pterocarya fraxinifolia (Lamb.) Spach, Zelkova 
carpinifolia (Pall.) K. Koch and Gleditsia caspica Desf., which survived the 
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last glacial period only in Hyrcanian forests, makes this area a unique 
relict ecosystem preserving the phylogenetic heritage of the late Ceno-
zoic (Browicz 1989; Gholizadeh et al. 2020; Scharnweber et al. 2007). 

The endemic relict flora is considered especially sensitive to climate 
changes (Song et al. 2021; Taleshi et al. 2019; Walas et al. 2019), which 
are frequently followed by marginal extinction at the warm edge of the 
range and growth at the cold edge, due to its low biotic complexity 
(Parmesan 2006; Pauli et al. 2007). In total, 256 endemic and near- 
endemic taxa belonging to 50 families and 152 genera of flowering 
plants have been identified in Hyrcanian forests (Ghorbanalizadeh and 
Akhani 2021) as especially sensitive to climate change (Ahmadi et al. 
2020; Alavi et al. 2019; Limaki et al. 2021). Hyrcanian forests were 
important refugia for temperate broad-leaved trees during the Quater-
nary glaciations (Akhani et al. 2010; Leroy et al. 2007; Zohary 1983). 
During the past five decades, increasing temperatures have been 
observed at many synoptic weather stations in Iran, including in the 
Caspian area (Azizi and Roshani 2008; Jafari 2008; Molavi-Arabshahi 
et al. 2016), with the average temperature increasing by 0.74 ◦C over the 
past 20 years (Attarod et al. 2017). Therefore, climate change may 
threaten the geographical distribution and habitat suitability of many 
species (Mohammadi et al. 2019) with high extinction risk, especially 
relicts of the Arcto-Tertiary forest, by eliminating their contemporary 
habitat (Ledig et al. 2012; Walther et al. 2002). Therefore, the prediction 
of suitable habitat under climate change provides important information 
for the conservation management of rare and endangered Cenozoic 
relict tree species (Qin et al. 2017). 

Gleditsia caspica Desf. (Leguminosae), one of these relics, is endemic 
throughout Hyrcanian forests; it is endangered by intense human ac-
tivity and habitat destruction (Milani et al. 2017; Schnabel and Kru-
tovskii 2004). This pioneer and highly important species is a deciduous 
legume and is found along the southern coastal plain of the Caspian Sea 
and lower mountain slopes in southeastern Azerbaijan and northwestern 
Iran (Akhani 2006; Nourmohammadi et al. 2019). Caspian locust trees 
are common throughout their range, native exclusively to temperate 
lowland forests and found from sea level to 500 m a.s.l. within the 
Hyrcanian ecoregion (Scharnweber et al. 2007). The natural habitats of 
this species are threatened by loss and fragmentation due to excessive 
felling of trees for agriculture and grazing, conversion of forestlands to 
residential areas and farmland, and hybridization with introduced spe-
cies (Gleditsia triacanthos L.) (Schnabel and Krutovskii 2004). Therefore, 
G. caspica is currently found only as individual stems and/or in small 
communities around row crop and cattle farms (Nourmohammadi et al. 
2016; Nourmohammadi et al. 2019). In the most recent assessments, this 
species is included on the list of endangered species (IUCN evaluation, 
2022; under review). Determination of the distribution range of 
threatened plants in response to climate changes and demarcation of 
past, contemporary, and future climate refugia of relict plants can be 
useful for developing valuable conservation efforts and management 
strategies (Tang et al. 2017; Zhang et al. 2014). 

An increase in atmospheric carbon dioxide concentration, associated 
with the expanded use of fossil fuel for industrial activities and land 
cover changes, will have a strong impact on average temperature (Gitz 
and Ciais 2004; Popp et al. 2012). Projected future changes in climate 
include a rise in temperature (by between 1.4 and 5.8 ◦C) and a change 
in the amount and frequency of precipitation until 2100 (Alavi et al. 
2019; Beckage et al. 2008). The prediction of species richness and the 
explanation of evolutionary processes are two of the main challenges of 
biological science (Huston 1994; Tang et al. 2018). The dispersal, 
migration, evolution, adaptation, and extinction of species are strongly 
controlled by environmental variables and climate change (Hampe and 
Petit 2005; Pearson and Dawson 2003). Species distribution modeling 
(SDM) is a geographically explicit approach that combines species 
occurrence data with environmental variables to produce spatially 
explicit and comprehensive maps that are valuable for identifying areas 
where conservation efforts and management strategies are most needed 
(Roberts and Hamann 2012; Tang et al. 2017). SDM is a very powerful 

approach that has been applied to estimate past distributions of relict 
species in relevant areas, model their present potential distribution 
range, and predict vulnerability under future climate change (Tang et al. 
2017). This methodology is useful for forecasting conservation areas 
(especially for designing zones for species protection, restoration, 
translocation, and reintroductions) and for asking questions regarding 
the patterns of niche evolution (Araújo and Peterson 2012). MAXENT is 
one of the most popular software programs for species range estimation 
(Phillips et al. 2006; Phillips et al. 2019). This tool uses the maximum 
entropy algorithm, a set of species locations and a set of environmental 
variables that may shape the species range. 

One of the most important priorities in biodiversity protection is the 
conservation and management of rare and threatened relict species. 
Reliable data on the natural population abundance, dynamics, and ge-
netic resources of vulnerable and endangered species are crucial for any 
conservation program (Sękiewicz et al. 2020). SDM was performed in 
this study to (1) map past geographic distributions of climatically rele-
vant areas and estimate the suitable areas that may serve as potential 
new habitats and (2) predict the impact of future climate change on the 
species distribution and evaluate the potential risks involved. 

2. Materials and methods 

2.1. Study species 

Gleditsia caspica Desf. (Leguminosae) is a dioecious, endemic, and 
critically endangered tree that occurs in the Hyrcanian ecoregion. This 
species is native exclusively to lowland forests, typically below an alti-
tude of 800 m a.s.l. (Boulos et al. 1994; Frey and Probst 1986). 

2.2. Sources of data and statistical analysis 

Data on the presence of G. caspica in Hyrcanian forests, along with 
the approximate area of the habitat, were taken from the data center of 
the Iranian Forest Organization (attached Excel file). Overall, 141 lo-
cations were collected: 74 in Gilan, 24 in West Mazandaran, and 43 in 
East Mazandaran (Fig. 1). 

The models of the potential distribution of G. caspica were created 
using the maximum entropy algorithm implemented in MAXENT 3.4.1. 
(Phillips et al. 2006; Phillips et al. 2019). We tested eight bioclimatic 
scenarios: one with current conditions, three with future climates using 
the CCSM4 model (Representative Concentration Pathway (RCPs) 2.6, 
4.5, and 8.5; (Collins et al. 2013; Gent et al. 2011)), and four with past 
conditions (Last Interglacial – LIG, approximately 130 ka BP; Last 
Glacial Maximum – LGM, approximately 21 ka BP; Younger Dryas – YD, 
between 12.9 and 11.7 ka BP; and Middle Holocene – MH, between 
8.326 and 4.2 ka BP). Additionally, to assess the importance of soil type, 
one edaphic–bioclimatic scenario was included for the current condi-
tions. Rasters for 19 bioclimatic variables were downloaded from two 
databases: CHELSA (LGM, current climate, and future conditions 
(Karger et al. 2017; Karger et al. 2018)) and PaleoClim (LIG, YD, and MH 
(Brown et al. 2018; Fordham et al. 2017; Otto-Bliesner et al. 2006)). The 
soil type raster (World Reference Base soil classification, TAXNWBR) 
was downloaded from the SoilGrids database (http://soilgrids.org 
(Hengl et al. 2017)). 

The spatial resolution of the rasters was 30 arc-seconds for CHELSA 
and 2.5 arc-min for PaleoClim. Ten variables were excluded from the 
analyses because of strong correlations, which were estimated using the 
vif function in the package ‘usdm’ in R (Naimi et al. 2014; RCoreTeam 
2021). Each analysis was conducted using bootstrapping with logistic 
output and 100 replications, 10,000 maximum iterations, and a 10− 5 

convergence threshold. The ‘random seed’ option was used, with 20% of 
the stands treated as test points to provide a random test partition. The 
receiver operating characteristic (ROC) curve and area under the curve 
(AUC) were used as criteria for model accuracy (Mas et al. 2013; Wang 
et al. 2007). The MAXENT results were visualized in QGIS 3.16.4 
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‘Hannover’ (QGISDevelopmentTeam 2020). The area of the potential 
range and values of the bioclimatic variables were calculated using 
SAGA GIS software (Conrad et al. 2015). 

The environmental differences between the three geographical re-
gions were estimated using principal component analysis (PCA), which 
was conducted using the ‘prcomp’ function in R. The analysis was per-
formed on a dataset of stands of species based on standardized values of 
the bioclimatic variables used in MAXENT modeling. 

3. Results 

3.1. Evaluation of models 

The obtained models had high AUC values; for most models, this 
value was 0.992. The exceptions were the two models of current con-
ditions (with and without soil), with an AUC of 0.993, and the LGM 
model, with an AUC of 0.982. 

3.2. Current potential distribution 

Gleditsia caspica is endemic to Hyrcanian forests; it usually occurs in 
broad-leaved forest and sometimes grows on riverside terraces and 
forest edges. According to data on species stands used in the MAXENT 
analyses, the average size of the stands is approximately 610 ha (the 
smallest is 3 ha, and the largest is 6500 ha). Most of the stands occur at 
low altitudes (78 populations below 500 m a.s.l.); only 16 are in areas 
above 1000 m a.s.l. The potential range of G. caspica covers most of 
Gilan Province, as well as a large part of Mazandaran Province (Fig. 2A). 
For the bioclimatic model, the suitable area (>0.05) was only 
27,610.46 km2, approximately half of which had moderate or good 
suitability (Table 1). The model with an additional soil raster showed 
almost the same potential range (Fig. S1). Within an estimated range, 
two regions with high suitability were observed: one stretched along a 
strip from the Talysh Mountains in the north to West Mazandaran in the 
south, and the other is located in the foothills of the Alborz Mountains in 
eastern Mazandaran. The most important variables in the MAXENT 
bioclimatic models were precipitation of the driest month (average 

Fig. 1. Location of all stands under study used in Maxent modeling.  

Fig. 2. The potential range of Gleditsia caspica; A - current conditions, B - future, model RCP2.6, C - future, model RCP4.5, D - future, model RCP8.5.  
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contribution 74.9%) and temperature seasonality (12.7%). Although the 
soil data did not significantly affect the potential range, in the bio-
climatic–edaphic model, soil type was more important than temperature 
seasonality (10.9 and 8.9%, respectively). The most suitable soil types 
for G. caspica were luvisols, phaeozems, and kastanozems. 

The PCA of the current bioclimatic variables used in the MAXENT 

analysis supported environmental differentiation between stands from 
the eastern part of the range (East Mazandaran) and populations from 
the western part (Gilan and West Mazandaran, Fig. 3). 

3.3. Future species range 

Predicted future climate change will negatively impact the natural 
stands of G. caspica. Although in the most optimistic model (RCP2.6), the 
area suitable for G. caspica is even larger than that of today, many stands 
in eastern Mazandaran and central Gilan may become endangered 
(Table 1, Fig. 4). In the more pessimistic scenarios RCP4.5 and RCP8.5, 
the conditions in these regions will be even worse. There is some pos-
sibility of a range shift to the north, as the Talysh Mountains became 
more suitable in scenarios RCP 2.6 and 4.5; additionally, conditions in 
coastal areas could be better than those of today (Fig. 4). 

The most important factor in all tested models was precipitation of 
the driest month (bio14). In Gilan and western Mazandaran, precipita-
tion would be higher than that of today in scenario RCP2.6, and even in 
the pessimistic scenario, RCP8.5, it does not fall below 30 mm (Fig. 5A). 
In eastern Mazandaran, which has different environmental conditions, 
the situation is more pessimistic. Precipitation in the future may drop 
significantly there, below the level that is suitable for Gleditsia, as 30 mm 

Table 1 
Potentially suitable area for Gleditsia caspica in each tested scenario.  

Model Suitability 

Weak 
(0.05–0.25) 

Moderate 
(0.25–0.50) 

Good 
(>0.5) 

Sum 

Current 13,809.41 6929.78 6871.27 27,610.46 
Current with 

soil 
14,595.92 6828.52 6595.31 28,019.75 

RCP2.6 17,234.37 9675.87 7173.09 34,083.33 
RCP 4.5 18,606.95 4942.41 3377.59 26,926.95 
RCP 8.5 10,663.98 6637.25 2382.05 19,683.28 
LIG 20,805.05 7838.52 1440.73 30,084.30 
LGM 2798.43 0.00 0.00 2798.43 
YD 29,904.38 1376.89 0.00 31,281.27 
MH 15,963.34 1678.09 0.00 17,641.43  

Fig. 3. Ordination plot for the first two principal components from a PCA on environmental variables for each stand; ellipses indicate geographical regions.  
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of rainfall during the driest month yields a potential suitability of 
approximately 30% when bio14 is treated as the only predictor (Fig. 5B). 

3.4. Past species range 

During the LIG period, the potential range of G. caspica was wide 
(covering >30,000 km2) and quite similar to the current potential range. 
However, in the glacial period, Gleditsia was probably pushed into 
refugia due to unfavorable climatic conditions. Only approximately 10% 
of the current potential range was suitable for the species during this 
period (Table 1). The MAXENT analyses revealed two main areas where 
the species could survive: a larger area in northern Gilan and a second, 

smaller area in southern Mazandaran (Fig. 6). Interestingly, the loca-
tions of these two refugia are similar to the current division between the 
western and eastern parts of the species range, which have different 
climatic conditions (Fig. 3). After the LGM, the climate became more 
favorable, and the species started to expand; during the YD, the potential 
range was similar to the current range, although suitability was lower. 
During the Holocene, the species could have occurred in similar areas, 
and changes in the range were associated mostly with transgressions of 
the Caspian Sea, which was visible in the Middle Holocene model 
(Fig. 6D). 

Fig. 4. Change in suitability between current conditions and future scenarios; A - change according to model RCP2.6, B - change according to model RCP4.5, C - 
change according to model RCP8.5, D - average change with localization of stands. 

Fig. 5. Values and importance of precipitation of the driest month (bio14); A – precipitation in mm according to the region and tested scenario; B - response curve for 
bio14 in the model of the current climate. 
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4. Discussion 

4.1. Model accuracy and current distribution 

Climatic variables are important environmental factors that shape 
sustainability in ecosystems and affect levels of biodiversity, from the 
organism to biome levels (Bellard et al. 2012; Liu et al. 2015). The 
ecological niches of tree species and their distribution patterns are 
determined by multiple components that work altogether and will be 
influenced by future climate change (Wang et al. 2019). Refugia facil-
itate the persistence of species during large-scale and long-term climatic 
change and offer suitable conditions in time and space for particular 
species (Keppel et al. 2015). Regarding fossil evidence, Gleditsia 
expanded throughout the Caucasus during the Miocene and part of the 
Pliocene (Schnabel and Krutovskii 2004; Shakryl 1992). Pack (1982) 
argues that G. caspica once had a wider range than it has now, but 
repeated Pleistocene glaciations led to range contractions and pushed 
the species into isolated refugia such as the southern Caucasus (Pack 
1982). The results of the estimated models provided accurate pre-
dictions of the current potential distributions of G. caspica in Iran. The 
AUC values that we obtained for the models in this research were very 
high (> 0.9), similar to those of other studies on potential distributions 
(Chakraborty et al. 2016; Taleshi et al. 2019; Tejedor Garavito et al. 
2015; Trisurat et al. 2009). The predicted species habitat suitability 
under different climate conditions in our study showed that the suitable 
area of G. caspica will expand due to predicted future climate change 
under the RCP2.6 scenario, and some new areas could become potential 
habitats, while under RCP8.5, G. caspica will lose approximately 29% of 
its suitable area. 

An increase in the suitable area of G. caspica, which was predicted 
under the RCP2.6 scenario, may be associated with relatively mild 
climate change, considering the low concentration of greenhouse gas 
emissions in this scenario. Theoretical precipitation in most of the cur-
rent range of the species will be even higher than that of today, and in 
the wet area of Hyrcania, high temperature may even have a positive 

impact by accelerating phenological processes and prolonging the 
growing season (Zhang et al. 2018). In the most pessimistic scenario 
(RCP8.5), the suitable range of G. caspica decreased, which is consistent 
with the results of previous studies conducted on different plant species 
worldwide (Ma and Sun 2018; Peng et al. 2019; Zhang et al. 2018). 
Many endemic species are included on the IUCN Red List of threatened 
species; with narrow geographic distributions and extremely restricted 
habitats, these species have limited adaptability to the ecological impact 
of strong climate change in comparison with broadly distributed species, 
and they are in danger of global extinction (Abdelaal et al. 2019; 
Abolmaali et al. 2018; Zhang et al. 2015). A significant increase in 
temperature, as well as lower precipitation, might have a negative effect 
on their distribution (Xu and Xue 2013). Our results show a more severe 
influence of climate change on the eastern part of Mazandaran (warmer 
and drier). Similar findings were also presented in the study by Taleshi 
et al. (2019), who showed that G. caspica will lose at least 70% of its 
suitable habitats under the RCP4.5 future scenario, while under RCP8.5, 
it will lose at least 83% of its suitable habitats by 2070. 

4.2. Model limitations 

Although the models presented in our work showed high AUC values 
and covered the entire range of the species, it should be noted that the 
method used has limitations. The soil raster could be used for a model of 
the contemporary range but not for models of the past because such data 
are not available; however, soil type was not a determining factor for 
Gleditsia. Additionally, species distributions are influenced not only by 
climatic and edaphic variables but also by habitat factors such as the 
occurrence of competition between species. The relationships between 
individual species can be very complex and affect potential ranges to 
varying degrees, but using them as variables in modeling is very diffi-
cult. In addition, considerations for predicting range shifts also require 
taking into account factors related to the biology of the tested species, 
such as seed dispersal, which affects the ability to colonize new areas. An 
additional factor that can hinder analyses in the Hyrcanian region is 

Fig. 6. The potential range of Gleditsia caspica in the past: A - Last Interglacial (130k), B - Last Glacial Maximum (21k), C - Younger Dryas (12.9–11.7 k), D - Middle 
Holocene (8.326–4.2 k). 
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strong human influence; large changes in vegetation cover due to 
management can disrupt a species’ natural range and artificially narrow 
its ecological requirements. 

4.3. Range shift in response to climate change 

The average climate conditions across the geographic range of 
G. caspica are different from the west to the east of the Hyrcanian 
ecoregion (Akhani et al. 2010). Mean annual rainfall decreases from the 
west (1350 mm) to the east (530 mm), while the mean annual temper-
ature increases from the west (15 ◦C) to the east (17.5 ◦C) (Sagheb- 
Talebi et al. 2014; Taleshi et al. 2019). Over the last five decades, an 
increase in temperature has been recorded at synoptic stations in the 
Caspian Sea, with 0.74 ◦C warming over the past 20 years (Attarod et al. 
2017; Jafari 2008). Ahmadi et al. (2019) reported an increasing trend in 
the mean annual temperature in Hyrcanian forests compared to the 
current climate, with increases of approximately 2.9 and 4.3 ◦C by 2050 
and 2070, respectively. Additionally, they predicted a 9.6% and 19.2% 
decrease in precipitation in the driest month by 2050 and 2070, 
respectively. 

Of the different factors related to climate conditions, precipitation in 
the driest month and temperature seasonality appeared to be the most 
influential with regard to the realized niche of G. caspica. A decrease in 
precipitation in the driest month implies severe drought conditions in 
summer (Trisurat et al. 2011). Some studies have shown that younger 
trees are expected to be even more susceptible to drought effects trig-
gered by ongoing climate change (Dell’Oro et al. 2020; Stojanović et al. 
2015; Stojanović et al. 2018). Additionally, the normal physiology of 
seeds could be affected by insufficient water availability, making 
germination difficult because of the induction of seed dormancy (Chen 
et al. 2020). Under the conditions of high temperatures and water 
scarcity, the seeds of G. caspica were found to be damaged by pests and 
diseases (Semenyutina and Melnik 2021), which can be tracked with 
signs of reduced growth and dieback in tree species (Allen et al. 2010). 
Precipitation during the driest month is different between the eastern 
and western parts of the G. caspica range. From the west to the east in 
Hyrcanian forests, the dry season lengthens from one to three months, 
and G. caspica presence appears to be limited by summer dryness. Thus, 
G. caspica is not naturally distributed at the eastern boundary of the 
Hyrcanian forest area, where annual rainfall is approximately 500 mm 
and temperature is higher (Alavi et al. 2019; Sagheb 2016). Tempera-
ture variables also played a significant role in the G. caspica range, which 
is a common pattern for plant species distributions (Linares et al. 2011; 
Long et al. 2021; Song et al. 2021; Tang et al. 2017). 

Latitudinal and elevational shifts in distribution patterns in response 
to 20th-century climate change have been reported for many species 
around the world (Büntgen and Krusic 2018; Kaky et al. 2020; Lenoir 
and Svenning 2015; McLaughlin et al. 2017; Rapacciuolo et al. 2014; 
Wolf et al. 2016), but this effect is more significant for relict tree species 
(Koo et al. 2017; Long et al. 2021; Tang et al. 2017). Future distribution 
scenarios in this study show the possibility of the G. caspica range 
shifting to the north, while the Talysh Mountains become more suitable 
as a species refugium; additionally, conditions in coastal areas could be 
more suitable than they are today. Upward shifts are one of the most 
frequent types of range shifts reported in response to contemporary 
climate change (Lenoir and Svenning 2015). In recent years, climate 
change-related range shifts of many plant species have been reported by 
several authors worldwide (Beckage et al. 2008; Gatti et al. 2019; Lenoir 
et al. 2008; Ogawa-Onishi et al. 2010; Vessella et al. 2017), with special 
attention on Hyrcanian forest ecoregions (Ahmadi et al. 2020;Alavi et al. 
2019; Limaki et al. 2021; Taleshi et al. 2019). The results of the studies 
conducted in Hyrcanian forests are largely consistent with our findings 
and have confirmed elevational shifts in Hyrcanian species distributions 
in response to global climate change (Alavi et al. 2019; Limaki et al. 
2021; Taleshi et al. 2019). An expected rise in the average temperature 
in northern Iran and an approximately 9% precipitation decrease by the 

end of the century (Azizi and Roshani 2008; Babaeian et al. 2010; Jafari 
2008) will probably lead to tree species shifts to higher altitudes, which 
are currently not favorable for the growth of many tree species due to 
lower temperatures and lasting cold in spring (Ahmadi et al. 2017). The 
expected shift of the geographical range of G. caspica toward the coastal 
areas observed in this study is probably associated with cool, relatively 
wet, and moderate climate conditions, a narrow range of temperature 
extremes, a high frequency of clouds and fog, and higher annual pre-
cipitation in the coastal area (DellaSala et al. 2015). However, if the 
potential range of this species shifts to the western areas of Hyrcanian 
forests, there is a lack of forest habitat for the presence of this species in 
these areas due to significant land-use change (agricultural and urban 
planning). 

4.4. Management implications 

One of the most important analytical–statistical tools in spatial 
ecology, land management (Williams et al. 2009), conservation biology 
(Watling et al. 2015), and species extinction risk assessment (Fordham 
et al. 2012) is SDM. The range size of plant species is related to their 
vulnerability to climate change, and the widespread decrease in species 
habitat could even drive them to extinction (Di Marco and Santini 2015; 
Zu et al. 2021). Our findings suggest that climate change severely ex-
acerbates contraction of the distribution range of G. caspica in the 
lowlands and may increase the risk of local extinction for this species. 
Dispersed populations, particularly in places with fragmented forests, 
may experience reduced connection and gene flow, resulting in unsuc-
cessful regeneration. 

Additionally, low-longevity seeds in the soil bank (Fazli et al. 2020) 
cannot stabilize population dynamics by spreading out risk and dimin-
ishing large fluctuations in response to short-term environmental per-
turbations. However, due to the high intensity of degradation and land- 
use change in the plains region of Hyrcanian forests, it may be impos-
sible to find a suitable habitat for the restoration of this tree species in 
the future, especially in the central parts of the range. Due to the severity 
of habitat destruction in the previous three decades, the development of 
conservation techniques, both in situ and ex situ, including seed storage 
by cryopreservation, is an urgent requirement for this species (Wade 
et al. 2016). Although the results of this study suggested widespread 
correspondence between the distribution range of G. caspica and envi-
ronmental conditions over time, other factors, such as competition, 
natural selection, dispersal limitation, and human-caused degradation, 
can also affect the species’ distribution in its habitat. 

5. Conclusions 

Gleditsia capsica is one of the most emblematic climate relicts of 
western Eurasia. The species is an endemic and threatened tree growing 
naturally only in the Hyrcanian forest ecoregion of Iran and Azerbaijan. 
Our work is the first to estimate the potential range of G. caspica under 
past, current, and future (2070) climate conditions and the relationship 
between the regional distribution of the species and climate change. 
MAXENT models supported the hypothesis that after the LGM, the tree 
species began to expand its range, reaching nearly the present potential 
range during the YD, especially in the eastern part of the range. Today, 
two refugia for G. caspica exist: a larger one in Gilan Province and a 
second one in the eastern part of Mazandaran Province. The results of 
the future climate analyses, combined with our database of current 
occurrence sites, indicated that populations of G. capsica occurring in the 
eastern part of the Hyrcanian forest ecoregion will be most threatened 
by climate change. However, a strong reduction in the species’ range is 
also expected in Mazandaran, the second refugial area. With the loss of 
at least 50% of suitable habitat area over the next half-century, an ex situ 
conservation strategy is recommended, particularly due to the good seed 
storage capacity of the genus Gleditsia under cryopreservation 
conditions. 
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