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The Hyrcanian forest of northern Iran is considered one of the potential centres for the evolution and domestication of
the genus Malus (Rosaceae). However, the biogeography, phylogenetic position, and taxonomic status of the Hyrcanian
wild apples have never been evaluated. In our study, the nucleotide sequences of the internal transcribed spacer (ITS)
and the #7nH-psbA intergenic spacer region from 14 natural populations were analysed. Phylogenetic analysis based on
the ITS and the Maximum-likelihood (ML) tree showed that all Hyrcanian samples were closely related to M. orientalis
and M. asiatica and can be placed within section Malus and series Malus. Furthermore, based on a comparison of ITS2
secondary structures, the Hyrcanian samples were identical to M. orientalis and M. sieversii. Biogeographic scenarios
constructed using Statistical Dispersal-Vicariance Analysis (S-DIVA) and the Bayesian Binary Method (BBM) indicated
that the ancestor of Malus originated during the Eocene, ~53 million years ago (Ma), and that China played a vital role
in the expansion of the range of the genus. The members of Malus colonized the Hyrcanian region from China during

the Miocene, ~22-10 Ma.
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Introduction

Despite the significance of the domesticated apple
(Malus domestica) as one of the most important temper-
ate fruit crops (Robinson et al., 2001), the time and
place of apple evolution, its range expansion throughout
the northern hemisphere, and its species number and
taxonomic divisions are still not well understood.
Climatic diversity among the different habitats of apples
and the intrinsic natural diversity of apples in nature
due to hybridization and introgression have probably
played important roles in the evolution of apples and in
the Rosaceae family generally (Katayama & Uematsu,
2003; Phipps, Robertson, Smith, & Rohrer, 1990),
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causing ambiguity about the number of extant Malus
species. Thus, significant disagreements still exist con-
cerning the names assigned to the species and varieties
of wild apples (Forte, Ignatov, Ponomarenko, Dorokhov,
& Savelyev, 2002; Janick, 2003; Savelyeva, Boris,
Kochieva, & Kudryavtsev, 2013).

The genus Malus Mill. comprises 2547 species with
five genetic centres: East-Asiatic, Middle-Asiatic,
Caucasian, European, and North American (Zhukovsky,
1965). Malus is traditionally divided into six sections:
Eriolobus (downy-lobed apples), Docyniopsis (docyni-
ous apples), Sorbomalus (mountain-ash apples),
Chloromeles (green-fruited apples), Gymnomeles (berry
apples), and Malus (true apples) (Langenfeld, 1991).

Similarly, disagreement prevails about the taxonomy
of wild apples in the Transcaucasian region and Iran.
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Apple is widespread in Iran from the north (Hyrcanian
forest) to the west and central parts of the country,
growing at different altitudes and habitats from the
coastal plains and steppes into the mountain regions
(Sabeti, 1976). Apple is an ancient fruit crop in Iran
(Janick, 2003), and phylogenetic studies have suggested
that Iran could be a major centre of diversity for domes-
tic apples and a very important hub for its domestication
and transfer from Central Asia to the West via the Silk
Road (Gharghani et al., 2009). Vavilov (1930) charac-
terized the South Caucasian centre as a ‘vast wood
consisting solely of the wild progenitors of fruit trees’.
Most studies have reported M. orientalis as the only
wild apple in the flora of Iran (Rechinger, 1964; Sabeti,
1976), but Phipps et al. (1990) mentioned the presence
of M. sieversii as well. Gharghani et al. (2009), in a
comprehensive study using wild and domestic apple
germplasm from different parts of the world, demon-
strated that Iranian cultivars and landraces were closely
related to both M. sieversii from Central Asia and
M. orientalis, which is native to Iran, Turkey, Russia,
and the Caucasus region. However, the wide distribution
of M. orientalis across different altitudes leads to a high
variability in vegetative morphology as well as morpho-
logical and olfactory fruit characteristics (Fischer &
Schmidt, 1938; Mansfeld & Biittner, 2001). Forsline,
Aldwinckle, Dickson, Luby, and Hokanson (2003)
described two subspecies of M. orientalis: subsp. montana
(Uglitzk.) Likh. and subsp. turkmenorum (Juz.) Langenf.
DNA barcoding, as an effective tool for correct
species identification, has been receiving increasing
attention in recent years (Bina, Yousefzadeh, Ali, &
Esmailpour, 2016; Hebert, Cywinska, & Ball, 2003;
Taberlet et al., 2007, Tautz, Arctander, Minelli,
Thomas, & Vogler, 2003; von Crautlein, Korpelainen,
Pietilainen, & Rikkinen, 2011). Many loci, including
rbcL, matK, psbA-trnH, rpoCl, and ITS2, have been
popularly used as DNA barcodes in plants worldwide.
The CBOL Plant Working Group (Group et al., 2009)
proposed a combination of two chloroplast loci, mafK +
rbcl, as the core barcode for land plants, with
trnH-psbA  and the nuclear ribosomal internal
transcribed spacer (ITS) as a complement. Chen et al.
(2010) have shown that ITS2 as a universal barcode
correctly identified 92.7% of over 6600 samples in
seven phyla (angiosperms, gymnosperms, ferns, mosses,
liverworts, algae, and fungi). Moreover, the applicability
of ITS2 in discriminating among a wide range of plants
within many plant families (e.g., Asteraceae, Rutaceae,
Rosaceae, etc.) has been confirmed (Gao et al., 2010;
Liu et al.,, 2012; Pang et al., 2011; Yao et al., 2010;
Yousefzadeh, Colagar, Tabari, Sattarian, & Assadi,
2012). Thus, DNA barcoding techniques may have the

ability to provide significant information regarding the
systematic classification of the genus Malus.

To date, no research has been reported on the genetic
diversity of the Hyrcanian wild apple species and its
genetic relationship with the other apples of the world.
Therefore, the aims of this study are (1) to investigate
the taxonomic status of Hyrcanian Malus using a DNA
barcoding approach, (2) to explore the phylogenetic
relationships of the Hyrcanian members within the
genus Malus, and more generally, (3) to elucidate the
historical biogeography of the genus Malus.

Materials and methods

Plant material, DNA extraction, and ITS
amplification

Leaf samples were collected from 14 apple populations
covering the entire distribution of species in the
Hyrcanian forest (Fig. 1; Table S1, see online supple-
mental material, which is available from the article’s
Taylor & Francis Online page at https://www.doi.org/10.
1080/14772000.2019.1583689).  Total DNA  was
extracted from fresh leaves using the method of Murray
and Thompson (1980) with some modifications
(Janfaza, 2016). Although studies by Liu et al. (2012)
indicate that 8—10 individuals per species from the entire
geographic distribution of the species analysed appear to
be sufficient for plant DNA barcoding, based on the
DNA barcoding database (http://www.barcodinglife.org/
views/login.php), 3-8 trees from each population were
selected and their ITS and trnH-psbA regions were
sequenced. The primers ITS-1 and ITS-4 (White, Bruns,
Lee, & Taylor, 1990) were used to amplify the complete
ITS regions. The frnH-psbA forward and reverse pri-
mers designed by Tate and Simpson (2003) and Sang,
Crawford, and Stuessy (1997), respectively, were used.
PCR amplifications were accomplished in 20 pl reac-
tions with the AccuPower HotStart PCR Premix kit
(Bioneer, Korea). The thermal cycling profile consisted
of an initial denaturation step of 360 s at 95 °C, followed
by 32 cycles of 60s at 95°C, 45s at 56°C, 90s at
72°C, and a final extension step of 5—7 min at 72 °C.

Phylogenetic, network analysis, and species
delimitation methods

The ITS region sequences were manually checked by
eye with Chromas ver. 2.31 (Technelysium Pty. Ltd,
South Brisbane, Australia), aligned by MUSCLE and
refined manually in MEGA 7 software (Tamura,
Stecher, Peterson, Filipski, & Kumar, 2013). Nucleotide
composition, number of variables, parsimony-
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Fig. 1. Geographic locations of sampling sites are indicated by black asterisks.
Table 1. Characteristics of the aligned ITS data matrix used for phylogenetic analyses.
Iranian apple Species apple in GenBank
ITS ITS
Region trnH-psbA ITS1 ITS2 trnH-psbA ITS1 ITS2
A (%) 42.8 17 12 342 17 12
C (%) 15.7 34 38 10.2 34.1 38
G (%) 10.4 31 33 15.8 31 32
U (%) 31.1 17 17 39.8 17 18
Length (bp) 372 591 218 372 500 272
Conserved sites 296 574 208 111 409 122
Variable sites 69 17 10 250 191 254
Parsimony site — 5 2 178 104 72

informative and conserved sites for each species were
calculated separately for the ITS1, 5.8S, and ITS2
regions. Maximum likelihood (ML) trees were generated
using Mega 6 software with a bootstrap procedure
(1,000 replications). The best-fit evolutionary model and
parameters were chosen by model test based on the
Akaike Information Criterion (AIC) as embedded in
MEGA 6 software (Tamura et al., 2013). Mega 6 soft-
ware was also used to evaluate genetic distance among
the selected alignment taxa (Table S2, see supplemental
material online) via the Neighbour-joining (NJ)

algorithm using Kimura 2-Parameter distance; sites were
weighted using gamma distribution, estimating alpha
parameters with Maximum likelihood (Kimura, 1980).
Secondary structure of ITS2 of the selected taxa was
compared by ITS2 database (Koetschan et al., 2009;
Schultz et al., 2006; Selig, Wolf, Miiller, Dandekar, &
Schultz, 2007). Species delimitation plug-in (SDP)
(Masters, Fan, & Ross, 2011) was used to determine the
taxonomic status of Iranian apple, which have recently
been proposed for species delimitation by Prévot,
Jordaens, Sonet, and Backeljau (2013).
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Divergence time estimate and

biogeographic analysis

Likelihood ratio test (LRT) was performed in PAUP
v4.0b10 (Swofford, 2002) to check whether molecular
clock is appropriate for our data, however the result
(P=0.00001) suggests that the relax molecular clock
approach is best fitted to explain the divergence time.
Partition homogeneity or incongruence length difference
(ILD) (Farris, Kallersjo, Kluge, & Bult, 1994) test was
performed in PAUP to concatenate our data (ITS and
trnH-psbA) or not. A heuristic search approach with
1,000 replicates and 100 random stepwise additions with
tree bisection reconstruction (TBR) branch swapping
implemented in PAUP v4.0b10 (Swofford, 2002) was
followed for ILD test.

Divergence time estimates were obtained by calibrat-
ing the basal node of Pyrinae (the outgroup) to a mean
age of 45 million years ago (Ma) (95% upper and lower
bound are 49.8 Ma and 37 Ma) and applying the normal
distribution parameter based on the previous studies of
Lo Presti and Oberprieler (2009) and Semerikov,
Semerikova, Polezhaeva, Kosintsev, and Lascoux (2013)
with standard deviation value of 1.0. The phylogenetic
trees were obtained as an output of a BEAST analysis
run for 50,000,000 generations in BEAST ver. 1.6.1
(Drummond & Rambaut, 2007) using the uncorrelated
lognormal relaxed clock parameter under the Yule
model of speciation and the GTR +1+ G model. The
maximum clade credibility tree was obtained by Tree
Annotator ver. 1.7.5 (Drummond, Suchard, Xie, &
Rambaut, 2012) and visualized in FigTree ver. 1.4
(Rambaut, 2012).

The distribution area of Malus and Pyrus was divided
into six regions based on the available samples:
A (Iran), B (Western Asia), C (China), D (North
America), E (Europe), and F (Eastern Asia). The
biogeographic scenario was inferred by applying
the event- and model-based approaches S-DIVA and
BBM, which are both embedded in the RASP software
(Ali, Yu, Pfosser, & Wetschnig, 2012, 2013; Yu, Harris,
Blair, & He, 2015).

The uncertainties in phylogeny were overcome by
loading 10,000 trees from a Markov chain Monte
Carlo (MCMC) output into the RASP software.
The maximum clade credibility tree and distribution
file were uploaded to show the biogeographic
reconstructions obtained by S-DIVA analysis. For
BBM analysis, only the maximum clade credibility
tree was used along with the distribution file to obtain
a reconstruction. The MCMC chains were run under
the JC+G (Jukes—Cantor + Gamma) model for
5,000,000 generations.

Results

ITS and trnH-psbA sequence characteristics
and phylogenetic analysis

The nucleotide composition, total length, GC content,
and sequence divergence for the amplified regions 1TS2
and total ITS for Hyrcanian Malus and all Malus taxa
are presented in Table 1. Phylogenetic analysis based on
ITS and the ML tree showed that all species in section
Malus were located in a distinct clade, supported by an
81% bootstrap value, and that species of the Malus
series were completely separated from those of the
Baccata series (Fig. 2). All Hyrcanian samples were
located in section Malus and series Malus with
M. orientalis and M. asiatica Nakai. Section Sorbomalus
was not monophyletic; M. foringoides Hughes and
M. transitoria CK. Schneid. were located in the same clade
as the species from section Malus. We also constructed
phylogenetic trees of apples using the #rnH-psbA region,
which did not discriminate among the sections and series
of Malus (Fig. S1, see supplemental material online).

Based on pairwise distance (K2P) among Malus taxa,
the Hyrcanian samples had a minimum distance from
M. orientalis. Additionally, the Hyrcanian samples
showed a maximum pairwise distance from M. hupehen-
sis (Pamp.) Rehder and M. yunnanensis C.K. Schneid.
(Table 2).

Comparison of ITS2 secondary structures

The secondary structures of the ITS2 regions in Malus
taxa, as expected for angiosperms (Schultz, Maisel,
Gerlach, Miiller, & Wolf, 2005), had four helices.
A comparison of secondary structure based on nucleo-
tide composition revealed that Helix III was the longest
and completely conserved, but it differed from the other
helices, especially from Helix II (Table 3). Based
on this comparison, the secondary structure of the
Hyrcanian samples was identical with those of M. orien-
talis and M. sieversii. However, a certain level of
variation in secondary structure was observed among
different samples of M. sieversii and M. orientalis.

Species delimitation plugin (SDP)

The result of the SDP analysis based on the MP tree
phylogeny is summarized in Table 4. The highest Intra/
Inter ratio was found in clade B (0.95). The highest
strict and liberal values of P ID were observed for clade
A (Table 4). The maximum average distance between
ancestral species in a clade (MRCA-tips) was detected
for clades B and E. Rosenberg’s P AB values showed
monophyly for these clades (>0.05 in all clades). If the
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Fig. 2. Consensus tree based on Maximum likelihood trees (1) and Bayesian inferences (2) produced with an analysis of ITS2
sequences of this study (circle) together with some species of the genus Malus from GenBank and the genus Pyrus as outgroup.

Bootstrap values are reported on branches if higher than 50%.

value of P (RD) is more than 0.05, the SDP method
supports the clade. Accordingly, the SDP method
supported all clades diagnosed in the MP tree, but the
Bayesian tree did not support the MP result (Fig. 2).

Network analysis

Based on a network analysis, the Iranian Malus samples
were located in one group with M. orientalis, M. asiatica,
M. prunifolia, M. sieversii, M. sylvestris, and M. niedzwetz-
kyana. This group, which shares four mutations at positions
13, 85, 117, and 118, was the newest group in this network
after M. toringoides and M. transitoria. Iranian samples and
M. orientalis were separated from M. asiatica by two
mutations at positions 593 and 464 (Fig. 3).

Biogeography of the genus Malus

The LRT result (P=0.00001) suggests that relax
molecular clock approach is best fitted to explain the
divergence time. ILD test result (P=0.97) favours the
concatenation of ITS and trnH-psbA datasets.

The biogeographic scenario constructed with the
S-DIVA and BBM analyses indicates that the current
distribution pattern of Malus and Pyrus is a result
of numerous dispersal and vicariance events. S-DIVA
postulates 40 dispersal, 14 vicariance, and one extinction
event, whereas the BBM analysis indicates 49 dispersal
and 11 vicariance events.

According to the ancestral reconstruction (at node I)
by S-DIVA, the ancestors of Malus and Pyrus origi-
nated in China (C) or China+ Europe (C+E) during
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Table 3. Comparison of secondary structure of ITS2 of species of the genus Malus

obtained from ITS2 database.

Species Accession number E-value Helix 1 Helix 2 Helix 3 Helix 4

Malus orientalis 6630899 1.1e-81 100 100 100 100

M.sieversii 6630888 1.1e-81 100 100 100 100

M.orientalis 6630894 2.9¢-80 100 91 100 88

M.sieversii 6630890 3.6e-80 100 100 100 88

M.niedzwetzkyana 6630897 2.9e-80 100 91 100 88

M.asiatica 6630895 1.1e-76 100 100 100 88

M. fusca 6630915 1.1e-76 100 91 100 88

M.torigoides 133779162 2.1e-76 100 91 100 88

M.transitoria 133779104 6.9¢-76 94 91 100 88

M.prunifolia 6630901 8.7e-76 100 91 100 88

M.halliana 6630903 1.8¢-74 100 91 100 80

M.angustifolia 6630924 2.3e-74 94 90 100 80

M.coronaria 6630926 2.3e-74 94 90 100 80

M.sieboldii 6630906 4.7e-74 100 91 100 88

M. X domestica 6630885 9.3e-80 100 91 100 80

M. X domestica 6630879 1.2e-79 100 91 100 100

M. X domestica 6630883 1.2e-79 100 91 100 88
Table 4. Summary statistics reported by the Species Delimitation plugin for ITS in each putative species.

Closest P ID P ID Av Rosenberg’s  Rodrigo’s

Clade Species Intra  Intra/Inter (Strict) (Liberal) (MRCA-tips) P AB P(RD)
A B 0.007 0.26 0.90 (0.83, 0.96)  0.97 (0.29, 1) 0.0038 0.01 1
A C 0.023 0.34 0.86 (0.79, 0.93)  0.96 (0.91, 1) 0.0127 0.01 1
A D 0.022 0.45 0.83 (0.76, 0.89)  0.95 (0.91, 0.99) 0.0115 0.01 <0.05
A E 0.022 0.06 0.77 (0.70, 0.84)  0.93 (0.98, 0.99) 0.0115 0.01 <0.05
B C 0.096 0.95 0.38 (0.72, 0.49) 0.72 (0.66, 0.79) 0.397 0.01 1
B D 0.69 0.81 0.84 (0.38, 0.59)  0.80 (0.74, 0.87) 0.397 0.01 1
B E 0.096 0.95 0.38 (0.72, 0.49)  0.72 (0.66, 0.79) 0.397 0.01 1
C D 0.015 0.21 0.48 (0.33,0.63) 0.85(0.7, 1) 0.0075 0.33 <0.05
C E 0.015 0.26 0.46 (0.30, 0.61)  0.82 (0.67, 0.97) 0.0075 0.33 <0.05
E D 0.005 0.1 0.72 (0.55, 0.90)  0.95 (0.80, 1) 0.0026 1/6E-6 <0.05

Intra/Inter — ratio of Intra (genetic differentiation among members of a putative species) to Inter (genetic differentiation between the
members of a putative species and the members of the closest putative species), P ID(Strict) — mean (95% confidence interval)
probability of correctly identifying an unknown member of a given clade using the criterion that it must fall within, but not sister to, the
species clade in a tree, Rosenberg’s P AB — probability of reciprocal monophyly under a random coalescent model and Rodrigo’s
P(RD) — probability that a clade has the observed degree of distinctiveness due to random coalescent processes (Masters et al., 2011).

the Eocene, ~53 Ma (95% HDP: 70.0-38.0), as shown
in Fig. 4 and Table 5. The favoured ancestral inference
at node III, representing the crown node of Malus, is C,
with a marginal probability value of 87.72%. The other
ancestral area at this node is China+ North America
(CD) with marginal probability values of 12%. The two
possible ancestral ranges (C and CD) at this node
probably indicate that China is the ancestral area of
Malus. The posterior probability value (PP) for this
node is 1.00, indicating strong support.

C, CD, and CE are the ancestral ranges at node IV
with 69%, 20%, and 8% marginal probability values
respectively, and the PP wvalue for this node is 0.93.
The ancestral reconstruction at this node and subsequent
nodes suggests expansion of Malus from China (C)
to North America (D), Eastern Asia (F), Europe (E),
and West Asia (B). The subsequent nodes also indicate

a vicariance event between China (C) and North
America (D).

The ancestral range at nodes V and VI is China
(C) with PP wvalues of 1.00 and 0.70, respectively.
Dispersal events from C to B, D and F are indicated
by the biogeographic inferences. The ancestral
ranges at node VI indicate a dispersal event from
China (C) to Iran (A). Thus, Malus entered Iran
through China.

Ancestral range at node VII is Iran (A) with 87.50%
marginal probability value and PP value for this node
is 0.60. The ancestral reconstructions at this and
subsequent nodes suggest two dispersal events from Iran
(A) to West Asia (B) and China (C).

Most of the dispersal events (23) occurred from
China to other areas, as shown in Table 6. North
America and Iran also played roles in the dispersal of
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Malus, as indicated by eight and two dispersal events
that occurred from these areas, respectively.

Bayesian Binary Method (BBM) analysis indicates
that the ancestors of Malus originated in China, as indi-
cated by the ancestral reconstruction at node III with
94% marginal probability value (Fig. 4). The BBM ana-
lysis suggests that dispersal occurred from C to A, B,
D, E, and F, as indicated by the ancestral reconstruction
at nodes IV, V, VI, and VII. Table 6 indicates that most
dispersal events occurred from C, D, and A with 19, 5,
and 2 dispersals, respectively.

Discussion
Taxonomic status of the Malus populations
in the Hyrcanian forest

The present study is the first to consider the molecular
taxonomic status and phylogenetic relationships of wild

Malus populations from the Hyrcanian region, one of
the most important centres of diversification and evolu-
tion of crop plants. Based on the three approaches used
in this study to determine the taxonomic status of the
Hyrcanian apple populations (ITS phylogenetic tree,
comparison of secondary structure of ITS2, and network
analysis), the taxa investigated are closely related to
M. orientalis, M. asiatica, and M. sieversii. The Nei
genetic distance also confirmed the topology of the
reconstructed phylogenetic tree. These results corres-
pond to previous reports of the presence of M. orientalis
and M. sieversii in the Iranian flora (Browicz, 1972).
Based on the network analysis, all apple taxa distributed
in the Caucasian and European regions (M. orientalis,
M. sylvestris, M. sieversii, M. niedzwetzkyana, and
M. asiatica) originated from M. prunifolia. Additionally,
Browicz (1972) reported that M. sylvestris is older than
M. orientalis. Our network analysis also confirmed this
proposition. However, the close relationship among
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Table 5. Age estimation of nodes of divergence time clade based on S-DIVA and BBM.

Age estimation (Ma) S-DIVA BBM
95% 95% Support

Nodes Mean HPD lower HPDupper AR MP (%) AR MP PrP)
I 53.00 42.0 70.0 C/CE 50/27 C 95.7 1.00
II 43.44 37.0 49.8 C/CE 64/36 C 85.3 1.00
111 44.00 27.8 60.3 C 87.72 C 94.0 1.00
v 22.41 14.2 35.0 C/CD 69/19 C 89.1 0.93
\Y% 27.56 16.5 342 C 100 C 84.0 1.00
VI 21.96 242 38.0 C 100 C 90.7 0.70
vl 09.90 04.5 17.9 A 87.50 A 90.7 0.65
Table 6. Dispersal details of different distribution area based on S-DIVA and BBM.

S-DIVA BBM
Distribution Dispersal Dispersal Distribution Dispersal Dispersal
Range from to Within Range from to Within
A 2.00 2.00 8 A 2.00 2.00 8
B 0.00 8.00 0 B 1.00 8.00 0
C 23.00 2.00 17 C 19.00 1.00 18
D 8.00 9.00 4 D 5.00 6.00 5
E 1.00 6.00 2 E 1.00 4.00 3
F 0.00 8.00 2 F 1.00 7.00 2

Caucasian taxa (M. orientalis, M. sylvestris, M. sieversii,
M. niedzwetzkyana, and M. asiatica) based on this
research is congruent with Harris, Robinson, and
Juniper (2002), which concluded that the morphological
diagnosis of these species is extremely difficult.

Based on our network and biogeographic analyses, M.
orientalis derives from the Iranian populations situated
in the western Hyrcanian forest (e.g., Masal and
Asalem). More generally, the high number of variable
sites in the ITS2 region (180 variable sites) and the high
consensus of this DNA region with morphological clas-
sifications indicate that this region is a suitable barcode
for apple taxonomy. Of course, due to hybridization
events (Coart, Van Glabeke, De Loose, Larsen, &
Roldan, 2006; Wagner et al., 2014) or incomplete lin-
eage sorting (Micheletti et al., 2011), population genetic
approaches using nuclear genetic markers such as micro-
satellites or SNPs can help reach a more accurate con-
clusion (Lumley & Sperling, 2011).

Taxonomic division of the genus Malus

The classification of the genus Malus proposed by
Forsline et al. (2003) and based on morphology is con-
firmed by our ITS2 phylogenetic tree. Moreover, based
on our network analysis results, the two series of section
Malus (series Baccata and Malus) were clearly sepa-
rated as two groups by 10 mutations, despite very com-
mon hybridization and introgression among species
from these series (Phipps et al., 1990).

The two species M. sieboldii and M. hupehensis are
clearly separated from the other species of section
Malus by a large number of mutations. This separation
is consistent with the distinct nature of M. sieboldii, as
shown by its large genome (it is the only pentaploid
species in section Malus). Furthermore, M. sieboldii has
been described as a hybrid species (Moore &
Ballington, 1990), and based on our network results, it
is likely that M. hupehensis is one of the parents of
M. sieboldii.

Fig. 4. (A) Divergence time estimations and ancestral state reconstructions based on combined data matrix (ITS + trnH-psbA regions)
estimated by statistical Dispersal-Vicariance analysis (S-DIVA) overlaid onto the maximum clade credibility chronogram from
BEAST. Nodes I to VII are discussed in the text. *Indicates above 0.95 posterior probability (PP) values, + indicates above 0.85 PP
values and # suggests below 0.85 PP values. (B) The colours in the legend show ancestral area at each node. (C) Dispersal routes
from China (C) to different areas are shown on the world map. (D) Dispersal routes from North America to various areas. The areas
shown on the world map are (A) Iran, (B) Western Asia (C) China, (D) North America, (E) Europe, and (F) Eastern Asia.
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Interestingly, our results do not support the mono-
phyly of section Sorbomalus (Phipps et al., 1990)
because the two species M. tramsitoria and M. torin-
goides are clearly closer to section Malus.

Biogeography of the genus Malus

Biogeographic reconstruction using S-DIVA analysis
suggests that the ancestor of Pyrus and Malus originated
in China (C) or China+ Europe (C+E) (Fig. 4) with
50%, and 27% marginal probability support, respect-
ively. BBM analysis also suggests China as an ancestral
area with 95.7% marginal probability support. The
ancestor of Malus originated during the Eocene,
~44 Ma (95% HDP: 60.3-27.8).

S-DIVA analysis suggests two main dispersal routes
of Malus. China (C) is the primary centre of diversity
and dispersal and North America is the secondary centre
of diversity. Both S-DIVA and BBM analysis indicates
23 and 19 dispersals from China to all other areas
respectively. Similarly S-DIVA analysis suggests 8 dis-
persal events and BBM analysis indicates 5 dispersals
from North America. Both these analyses suggest 2 dis-
persal events from Iran to China and West Asia.

Nine radiations to North America occurred from
China during the Oligocene and Miocene, between 30
and 12Ma. Migrations between the Old and New
Worlds in diverse plant and animal groups probably
occurred by either the North Atlantic Land Bridge
(NALB) or Beringia (Tiffney and Manchester, 2001).
Six Transoceanic dispersals occurred from China (C) to
Eastern Asia (F), and all these radiations occurred dur-
ing the Miocene, between 26 Ma and 4 Ma.

The members of Malus colonized Iran from China
~24-10Ma, during the Miocene (Fig. 4). Later, radia-
tions occurred from Iran to China and Western Asia
during the Pliocene and Pleistocene respectively.

China played a vital role in the expansion of the dis-
tribution range of Malus because most of the radiations
(23 and 19 as suggested by S-DIVA and BBM analyses,
respectively) occurred from China. The radiations from
China were multidirectional, as they occurred toward
Europe, North America, Eastern Asia and Western Asia,
but dispersal to Iran occurred via Western Asia. The
radiations from North America to the Old World prob-
ably occurred via two routes. One dispersal occurred
from North America to China and two dispersals
occurred from North America to Europe.

Conclusions

Northern Iran (Hyrcanian forest) is one of the most
diverse areas of forest species such as apple trees, where

the special conditions of this habitat have increased the
probability of formation of various micro-varieties, and
a wide variety of species has been created. The taxo-
nomic status of the Hyrcanian apple populations
revealed that the taxa investigated are closely related to
M. orientalis, M. asiatica, and M. sieversii and all apple
taxa distributed in the Caucasian and European regions
originated from M. prunifolia. Biogeographic recon-
struction suggests that members of Malus colonized Iran
from China through Western Asia ~22—-18 Ma, during
the Miocene, and China played a vital role in the expan-
sion of the distribution range of Malus. The similarity
of molecular taxonomy with traditional classification
(morphology) indicates that the ITS2 region is a suitable
barcode for apple taxonomy.
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