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Abstract: Since the Anthropocene, biodiversity loss owing to human activity and climate change has
worsened. Quercus gilva is an evergreen oak species native to China, Japan, and South Korea and
is threatened by a long history of human impact. The purpose of this study was to (1) reassess the
threatened category of Q. gilva based on a detailed survey, and (2) identify the genetic structure and
diversity of Q. gilva based on genomic data. First, we conducted a detailed survey of the populations
in China. Second, we collated all the literature and information. Finally, genome-wide genetic
variation was analyzed based on 65 individuals from 22 populations. We found that Q. gilva has
suffered rapid population decline, and at present, most populations are very small. The evolutionary
path of Q. gilva was from the southwest to east of China and then to Japan and South Korea. Quercus
gilva showed no distinct genetic structure and had a relatively low genetic diversity. Among the
22 populations, most populations in southwestern China, South Korea, and Japan had high genetic
diversity. The populations in Jingning (Zhejiang province; ZJN), Wuyuan (Jinaxi province; JWY), and
Zherong (Fujian province; FZR) suffered a strong bottleneck. In conclusion, Q. gilva is an endangered
species native to East Asia. Because of the very low genetic diversity of Q. gilva and most populations
are small, we need to (1) strengthen the protection of this species, (2) conduct conservation actions
with in-situ reinforcement populations, and (3) select populations with high genetic diversity as
provenances for afforestation efforts. Finally, we suggest that in the future, genetic diversity should
be considered as the sixth criterion for IUCN to evaluate the threatened category.

Keywords: biodiversity loss; conservation genomics; endangered species; Fengshui/shrine/temple
forests; genetic diversity; human impact

1. Introduction

Trees form the principal components of forests and serve as immense support for
terrestrial ecosystems and are of vital importance ecologically, economically, and cultur-
ally [1–3]. Quercus (oaks), predominantly in the Northern Hemisphere, is the largest genus
of the family Fagaceae and one of the largest genera of all tree families [4]. Unquestionably,
oaks are among the most successful, widely distributed, and valuable hardwood trees
ecologically, economically, and culturally [5]. As keystone species in many ecosystems,
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oaks play pivotal roles in shaping biodiversity, creating healthy ecosystems, and carbon
sequestration [6,7]. During the Anthropocene, oaks have also been a valuable source of
food, housing components, and materials [7].

Since the Anthropocene, biodiversity loss owing to human activity and climate change
has worsened, and more attention should be paid to biodiversity conservation [8]. Through
the global tree assessment, we know that currently, 30% of tree species are threatened with
extinction [1]. Forty-one percent of oaks are of conservation concern, and 31% are estimated
to be threatened with extinction [4]. Although the percentage of threatened species is
already high, the assessment of many species of least concern (LC) is very rough (with
only the area of occupancy (AOO) and extent of occurrence (EOO) calculated based on the
occurrence data). A detailed population survey and genetic diversity estimation can help
us to reassess the conservation status of these species of LC.

Genetic diversity is recognized as one of the three basic elements of biodiversity [9].
Current approaches to biodiversity conservation are largely based on geographic areas,
ecosystems, ecological communities, and species, with less attention paid to genetic diver-
sity and the evolutionary continuum from population to species [10,11]. Genetic diversity
within all species, not just domesticated species and their wild relatives, must be conserved
and monitored using appropriate metrics [11]. Thus, genetic diversity should be recognized
as one of the main targets for biodiversity conservation under the international agreements
on the “post-2020” framework [12].

Quercus gilva Blume is an ecologically important large tree of evergreen broad-leaved
forests in China, Japan, and South Korea [13,14]. It is a precious tree species with hard and
reddish-brown timber [15]. Because of the long history of large-scale regional development
and excessive logging, many populations of Q. gilva have limited habitats and a small
population size in their entire distribution range [14,16,17]. Most of the natural populations
of Q. gilva are threatened with extinction, and local governments have classified this
species as endangered or critically endangered [13–15,18]. Quercus gilva has recently been
assessed as LC by the Botanical Gardens Conservation International (BGCI) and IUCN SSC
Global Tree Specialist Group [19]. Thus, the reassessment of this species based on detailed
population survey data is urgently needed.

Forest and landscape restoration are approaches that aim to regain ecological func-
tionality and enhance human well-being in deforested or degraded landscapes [20]. Well
planned and executed for reforestation with selected species and populations of selected
provenances could maximize carbon sequestration, biodiversity, and livelihood benefits [21].
During the last 10 years, Q. gilva has been recognized as an important tree species and has
been used for forest restoration in Zhejiang, Fujian, Jiangxi, and Hunan province of China.
In the future, focus needs to be on the conservation of natural populations, germplasm
evaluation, and utilization of excellent germplasm. Genetic diversity has been recognized
as an important criterion to consider the prioritizing populations for protection [22] and
as the basis for excellent germplasm selection [23]. The rapid expansion of genomic in-
formation will transform our understanding of the amount, distribution, and functional
significance of genome-wide genetic variation in natural populations to guide conservation
and reforestation [24,25].

The main aim of this study was to understand the endangered and conservation status
of Q. gilva based on a detailed population survey and genetic diversity. The following
specific aspects were explored: (1) the size, age composition, and main threats to the natural
populations of Q. gilva, (2) the phylogeny and population structure of Q. gilva based on the
genomic data, and (3) the patterns of genetic diversity at the genomic level.

2. Materials and Methods
2.1. Data Collection and Population Survey

Occurrence data with geographical coordinates of Q. gilva were compiled from the
Chinese Virtual Herbarium [26], IUCN Red List of Threatened Species 2019 [19], and
other publications related to Q. gilva. We then collected the population status (size, age
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composition, and main threats, if possible) of Q. gilva in Japan and South Korea based
on the publications. Additionally, between 2020 and 2022, an intensive field survey was
conducted to explore the size, age composition, and main threats to each population in
China. Finally, we surveyed 40 mainland Chinese populations. The populations were then
divided into four categories based on the number of individuals in each population: large
(>500 individuals), medium (100–500 individuals), small (30–100 individuals), and very
small (<30 individuals) populations. The AOO and EOO were calculated using the GeoCAT
online browser (http://geocat.kew.org/ (accessed on 23 November 2022)) [27]. We also
collected the main threats, population trends within three generations, and habitats for each
population of Q. gilva. Finally, we reassessed the status of Q. gilva across its distribution,
following the “IUCN Red List Categories” [28].

2.2. Plant Material Samples, Resequencing, Control, and Mapping

A total of 65 individuals from 22 populations (three individuals for each population, ex-
cept one population (only two individuals for the population of Jingning, Zhejiang province
(ZJN)) were carefully selected to represent most of the natural populations of Q. gilva in
East Asia (Figure 1 and Table S1). For each sample, genomic DNA was extracted from
mature leaves using a cetyltrimethylammonium bromide (CTAB)-based protocol [29]. The
concentration and quality of the total genomic DNA were determined using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA libraries
(350 bp) for Illumina sequencing were constructed for each accession according to the
manufacturer’s specifications. After DNA library construction, sequencing was performed
on an Illumina NovaSeq 6000 platform by a commercial service (Biomarker Technologies,
Beijing, China) with 150 bp paired-end reads. Raw reads were filtered based on the follow-
ing criteria: paired-end reads with >10% ‘N’ bases, reads on which more than 50% of the
bases had a quality score of less than 20 (Phred-like score), and sequencing adapter. Finally,
high-quality clean reads were obtained for subsequent analysis.

2.3. SNP and Insertion/Deletion (InDels) Calling

All clean reads for each individual were mapped to the reference genome using the
MEM algorithm of the Burrows–Wheeler Aligner (bwa-mem2 v2.2). The average mapping
rate was 89.5%, and the average coverage rate was 10-fold for the reference genome.
The mapping results were sorted, and duplicate reads were removed using SAMtools
rmdup (version 1.9) [30]. SNPs and InDels were called using the HaplotypeCaller module
in the Genome Analysis Toolkit (GATK) (version 3.8) [31] and were filtered with the
following parameters: QD < 2.0||MQ < 40.0||FS > 60.0||QUAL < 30.0||MQrankSum <
−12.5||ReadPosRankSum < −8.0-clusterSize 2-clusterWindowSize 5. The SNPs identified
above were subjected to a second round of filtering to improve the accuracy and efficiency
of subsequent analyses. Only SNPs with a minor allele frequency greater than 5% and
less than 20% of missing data were considered as high-quality SNPs. Transition (Ti),
transversion (Tv), Ti/Tv, heterozygosity, homozygosity, and heterozygosity ratio were
further identified using GATK. We used Fagus sylvatica [32] as an outgroup for phylogenetic
analysis. Finally, 4,020,695 SNPs containing outgroup and 2,993,608 SNPs without outgroup
was identified and used for subsequent downstream analysis.

http://geocat.kew.org/
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Figure 1. Geographic distribution (black dotted line) and the sampling locations (black dots) of
Quercus gilva (A). The forests and selected old trees of Q. gilva (B–H). Population code abbreviations
in Figure 1A are the same as in Table S1.
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2.4. Phylogenetic Inference and Population Genomic Analysis

A neighbor-joining (NJ) phylogenetic tree was constructed using MEGAX [33] under
the p-distances model with the 4,020,695 SNPs. We also used IQ-TREE [34] with self-
estimated best substitution models to generate a maximum likelihood (ML) phylogenetic
tree. The two phylogenetic trees were run with 1,000 bootstrap repetitions, using Fagus
sylvatica as the outgroup.

To visualize the genetic relationships among the samples, principal component analy-
sis (PCA) was performed using the smartpca program in EIGENSOFT version 6.0 based on
2,993,608 SNPs [35]. The initial three eigenvectors were plotted in three dimensions. AD-
MIXTURE version 1.22 [36] was used to infer historical ancestor clusters showing clusters
of similar genotypes. The membership of each genotype was run for a range of genetic
clusters from a value of K = 1 to 10 by using the admixture model.

2.5. Population Genetic Diversity and Linkage Disequilibrium (LD) Analyses

The observed heterozygosity (HO), expected heterozygosity (HE), polymorphism
information content (PIC), Nei diversity index (H), and Shannon–Wiener index (I) were
calculated using the “PopGenome” package in the R project [37,38]. Nucleotide diversity
(π) was calculated within a non-overlapping 100-kb window using VCFtools (version
0.1.13) [39]. The LD was calculated using PLINK version 1.9, within a 1000 kb window,
and a maximum of 999,999 SNPs for each window [40]. The squared correlation coefficient
(r2) of each chromosome was calculated using SNP pairs only from the corresponding
chromosome. Pairwise r2 values within and between different chromosomes were averaged
across the entire genome. We compared the LD patterns among different populations using
the LD decay distance, indicated by the r2 decreased to half of the maximum.

3. Results
3.1. Reassessment of Q. gilva

After collating all the distribution data of Q. gilva from different resources, there were
a total of 108 known populations in East Asia (68 populations in China, 35 in Japan, and 5
in South Korea). According to the information gathered from indigenous people, almost all
old trees (except individuals located in Fengshui forests and temples) have been deforested
during the last 100 years. Based on this information, Q. gilva can be listed as endangered as
per the EN-A4ad criteria.

Although the EOO of Q. gilva was very high, the area in South Korea was very small.
The AOO of Q. gilva was less than 500 km2 with the largest being in China (272 km2) and
the smallest in South Korea (20 km2). More than half of the known populations have been
surveyed in China. Only one large population had more than 500 individuals, and most
of the surveyed populations were very small, with fewer than 30 individuals. There were
even some occurrences with only one individual (Tables 1 and S2). Based on the population
status, we estimated that more than 40% of the AOO after three generations (future-AOO)
would be lost. Considering the populations without information, we inferred that more
than 50% of the AOO would be lost in the next three generations. Finally, we estimated that
there were fewer than 10,000 individuals within the distribution area of Q. gilva. During the
last 100 years, the main threat to Q. gilva in natural populations has been logging and wood
harvesting, as it is used as a biological resource. To support the rapid development of society,
expansion of land under agriculture, residential use, and transportation infrastructure has
also led to the destruction of natural Q. gilva populations. According to our survey, most
of the current populations were conserved in the Fengshui forests near the villages, and
forests surrounding shrines and temples with severe fragmentation. According to the
IUCN Red List categories and criteria, the conservation status of Q. gilva is also determined
to be endangered as per the EN-A4c criteria.
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Table 1. Summary of the current status of Quercus gilva.

Country China Japan South Korea Total/Summary

Number of
populations 68 35 5 108

AOO (km2) 272 140 20 432
Future-AOO

(km2) 148 92 8 248

EOO (km2) 873,462 161,420 84 1,921,293
NLP 1 0 0 1
NMP 2 0 0 2
NSP 12 0 1 13

NVSP 31 12 4 47
NISS 23 23 0 46

Total individuals <5000 <2000 <600 <10,000

Main threats

Logging and
wood harvesting;
Agriculture and

development

Logging;
Agriculture and

development

Human-
mediated

disturbance

Agriculture and
Biological

resource use

PTTG Decrease
noticeable

Decrease
noticeable No information Decrease

noticeable

Main area
conserved

Fengshui forests
and temples

Forests
surrounding
shrines and

temples

Gotjawal
(conserved area) Protected Trees

AOO, area of occupancy; Future-AOO, AOO after three generations; NLP, Number of large populations: >500
individuals; NMP, Number of medium populations: 100–500 individuals; NSP, Number of small populations:
30–100 individuals; NVSP, Number of very small populations: <30 individuals; PTTG, Population trends within
Three Generations; NISS, No information about population size and structure.

3.2. Detection of Genome-Wide Variant

We re-sequenced 65 individuals (22 populations) of Q. gilva collected from its main
distribution area in East Asia: 19 populations from China, one population from South
Korea, and two populations from Japan. A total of 706 Gb of high-quality clean reads
were obtained. Among the 65 individuals, seven of them had 20 Gb clean reads and for all
other individuals, clean reads were between 8.9 Gb and 11.2 Gb. We obtained an average
of 36,206,470 reads, with an average Q20 value of 95.72%, Q30 of 89.46%, and average
GC content of 37.01%. The average sequencing depth was 10.23. The 1× coverage of all
individuals was higher than 80% with an average of 84.72%, except for one individual with
a coverage of 56.75%. These high-quality sequences were aligned to the chromosome-level
high-precision genome with the average mapping rate of 91.25%; alignment and proper
mapping reached 83.17% (Table S1).

Among the 65 individuals of Q. gilva, 15,377,234 SNPs and 4,405,966 InDels were
identified. The number of SNPs for each population was between 2,172,504 and 4,293,739,
while for each individual, the number of SNPs for each individual was between 1,477,213
and 2,560,913 (Tables 2 and S2). Transitions and transversions accounted for 71.87% and
28.12% of the total number of SNPs, respectively, with an average transition/transversion
(Ti/Tv) ratio of 2.56. The number of heterozygosities in different samples varied from a
lowest of 712,570 to a highest of 1,513,312, with an average of 1,097,305 (Tables 2 and S2).
The number of homozygosities in different samples varied between 761,543 and 2,136,876,
with an average of 906,786 (Tables 2 and S1).
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Table 2. Summary of genetic variation in Quercus gilva populations.

Population Code (Location) SNPs Indels Transition Transversion Ti/Tv Heterozygosity Homozygosity Het-Ratio

GLP (Liping, Guizhou) 3,507,918 1,115,687 1,403,828 547,870 2.56 1,106,329 845,370 0.5666
GJK (Jiangkou, Guizhou) 3,470,289 1,150,966 1,510,648 589,730 2.56 1,194,235 906,143 0.5636

GCS (Changshun, Guizhou) 3,448,941 1,055,047 1,507,376 579,442 2.597 1,132,727 954,091 0.5425
HXX (Xiangxiang, Hunan) 4,293,739 1,378,636 1,596,453 626,624 2.54 1,343,567 879,510 0.6023

HXS (Xinshao, Hunan) 3,561,533 1,162,826 1,514,130 589,450 2.56 1,247,186 856,394 0.5928
HDK (Dongkou, Hunan) 3,932,356 1,236,055 1,451,795 562,065 2.58 1,159,165 854,695 0.5755

HCN (Changning, Hunan) 3,819,985 1,222,766 1,477,122 574,678 2.57 1,179,174 872,625 0.5746
HSZ (Sangzhi, Hunan) 3,083,571 983,796 1,351,905 522,997 2.58 1,027,765 847,137 0.5453
HPJ (Pingjiang, Hunan) 3,149,545 1,019,904 1,324,570 516,136 2.56 931,328 909,378 0.5036
HYL (Yanling, Hunan) 2,445,579 850,489 1,370,498 535,637 2.56 1,046,839 859,296 0.5485
JWY (Wuyuan, Jiangxi) 3,129,945 1,056,778 1,451,178 566,446 2.56 1,043,045 974,579 0.5157
FCT (Changting, Fujian) 3,581,645 1,144,872 1,448,578 563,974 2.56 1,123,022 889,529 0.5525
FZR (Zherong, Fujian) 5,183,429 1,750,582 1,501,902 719,470 2.21 908,988 1,312,384 0.4290
FMQ (Minqing, Fujian) 3,486,120 1,157,688 1,578,398 614,521 2.56 1,296,886 896,033 0.5890

FJO (Jian’ou, Fujian) 3,361,907 1,112,365 1,471,386 573,316 2.56 1,128,122 916,580 0.5518
ZYZ (Yinzhou, Zhejiang) 2,428,260 858,412 1,382,278 544,668 2.54 986,717 940,225 0.5115

ZZS (Zhoushan, Zhejiang) 3,229,541 1,053,082 1,416,464 550,877 2.57 1,088,961 878,380 0.5522
ZNH (Ninghai, Zhejiang) 3,732,811 1,179,976 1,421,104 540,260 2.63 1,075,951 885,413 0.5442
ZJN (Jingning, Zhejiang) 2,172,504 699,612 1,112,899 413,417 2.69 714,120 812,196 0.4684

JGU (Gueok-ri, Jeju) 3,876,609 1,232,391 1,518,845 590,571 2.57 1,218,079 891,338 0.5774
MMY (Miyakonojo-shi, Miyazaki) 3,852,953 1,223,121 1,477,301 572,304 2.58 1,146,487 903,117 0.5564

MNB (Nobeoka-shi, Miyazaki) 3,551,342 1,109,444 1,400,624 533,912 2.62 1,069,663 864,873 0.5527
Total/Average 15,377,234 4,405,966 1,440,422 533,912 2.56 1,097,305 906,786 0.5462



Diversity 2023, 15, 230 8 of 14

3.3. Phylogenetic and Population Structure Analyses of Q. gilva

The NJ and ML phylogenetic trees were constructed using 4,020,695 SNPs in the
single-copy genes. The NJ and ML trees consistently showed that individuals from the
Zherong, Fujian (FZR), Dongkou, Hunan (HDK), and Xiangxiang, Hunan (HXX) popula-
tions did not cluster into one lineage. According to the NJ and ML trees, all the Q. gilva
individuals could be divided into three major groups: West, Central, and East groups.
Generally, the populations from Guizhou and western Hunan provinces comprised the
western group. The populations from Eastern Hunan, Jiangxi, Fujian, and most of Zhe-
jiang provinces formed the central group. Populations from South Korea, Japan, and ZZS
(Zhoushan, Zhejiang) formed the main part of eastern group (Figure 2). There were three
main differences in the phylogenetic structures between the NJ and ML trees of Q. gilva
populations (Figures 2 and S1). First, the GLP population (Liping, Guizhou) was nested
into the central group on the ML tree, whereas the western group was nested in the NJ tree.
Second, the FMQ population (Minqing, Fujian) was nested into the central group on the
ML tree, whereas the eastern group was nested in the NJ tree. Finally, compared to the NJ
tree, the ML tree had four clear clades for the Central and East groups (Figures 2 and S1).
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Figure 2. Neighbor-joining phylogenetic tree and population structure of Quercus gilva. Fagus sylvatica
was used as the outgroup for the phylogenetic analysis. The figure does not show the outgroup.
Population codes abbreviations are the same as in Table 2.

The results of the cross-validation (CV) provided by admixture analysis showed that
the CV error rate had a minimum value when K = 1. The CV error rate was relatively low
value when K = 2–5 (Figure S2). When K = 2, the populations of ZYZ and HYL formed
one group, and the remaining populations formed the second group. When K = 3, the
two populations in Jiangxi province formed one group, the ZYZ population was identified
as the second group, and the remaining populations were classified into the third group.
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When K = 4, the two most western populations (GCS and GJK) formed the first group,
the HSZ and JWY populations formed the second group, the ZYZ and HYL populations
formed the third group, and the remaining populations were classified into the fourth
group. When K = 5, the minor change observed as that the HSZ population merged into
the western group and the HYL population separated again (Figure 2). Based on the PCA
results, we found that the ZYZ, HYL, and JWY populations were the most distinct. The
remaining populations were clustered together (Figure S3).

3.4. Genome-Wide Patterns of Nucleotide Diversity and LD Analyses

Among the 22 populations, the values for observed heterozygosity (HO) and expected
heterozygosity (HE) ranged between 0.1506 and 0.2441 and between 0.1156 and 0.2199,
respectively. The polymorphism information content (PIC) values were between 0.089
and 0.1765, indicating that all the Q. gilva populations had a low level of polymorphism.
Moreover, the Nei diversity index (H: ranged between 0.1399 and 0.265), Shannon–Wiener
index (I: between 0.1646 and 0.328), and nucleotide diversity (π × 10−3: between 0.522
and 0.973) were calculated to evaluate the genetic diversity of different populations. The
nucleotide diversity of Q. gilva was found to be 0.994. The ZYZ, FZR, ZJN, and HYL
populations showed substantially lower diversity than the HXX, JGU, HDK, HXS, and
MMY populations (Table 3).

Table 3. Genetic diversity of Quercus gilva populations.

Population HO HE PIC H I π × 10−3

GLP 0.2083 0.1876 0.15 0.2269 0.2787 0.863
GJK 0.2197 0.1807 0.1437 0.2182 0.2666 0.834
GCS 0.1867 0.165 0.131 0.1999 0.2431 0.735
HXX 0.2401 0.2199 0.1765 0.265 0.328 0.887
HXS 0.2322 0.1904 0.1516 0.2297 0.2815 0.964
HDK 0.216 0.2096 0.168 0.2534 0.3122 0.965
HCN 0.2192 0.2048 0.1639 0.2472 0.3045 0.727
HSZ 0.1965 0.1641 0.1301 0.1994 0.2413 0.727
HPJ 0.1793 0.1681 0.1337 0.2038 0.248 0.757
HYL 0.2077 0.1256 0.0968 0.1521 0.179 0.568
JWY 0.1975 0.1651 0.1307 0.1992 0.2425 0.762
FCT 0.2132 0.1945 0.1553 0.2354 0.2884 0.892
FZR 0.1913 0.1761 0.1389 0.2248 0.257 0.546
FMQ 0.2441 0.1897 0.1506 0.2285 0.2795 0.884
FJO 0.2126 0.1764 0.1409 0.2128 0.2618 0.815
ZYZ 0.1936 0.1156 0.089 0.1399 0.1646 0.522
ZZS 0.2113 0.1773 0.1408 0.2144 0.2612 0.812
ZNH 0.205 0.2021 0.1616 0.2449 0.3003 0.905
ZJN 0.1506 0.1207 0.0948 0.1609 0.175 0.549
JGU 0.2294 0.21 0.168 0.2532 0.3122 0.973

MMY 0.2161 0.2068 0.1655 0.25 0.3075 0.956
MNB 0.2079 0.1973 0.1576 0.2386 0.2928 0.891

Total 0.994
HO, observed heterozygosity; HE, expected heterozygosity; PIC, polymorphism information content; H, Nei
diversity index; I, Shannon-Wiener index; π, nucleotide diversity. Population code abbreviations are the same as
in Table 2.

Half of the maximum squared correlation coefficients (r2) between pairwise SNPs
ranged from 0.319 to 0.463. Linkage disequilibrium decayed to half among different
populations in the range of 0.26 to 685.23 kb. The LD decay measured by physical distance,
at which the pairwise correlation dropped to half of its maximum value, occurred at
685.23 kb in the GJK population (r2 = 0.368) and 0.27 kb in the HYL population (r2 = 0.451).
There are three populations (ZJN, FZR, and JWY) that did not reach the half of the maximum
r2 (Figure 3 and Table S3).
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4. Discussion

Our assessment showed that Q. gilva is an endangered (EN) species as per the EN-
A4acd criteria. According to our extensive field survey and more than 30 literature sources
on Q. gilva, we found that this species has suffered massive population decline and will
be facing accelerated declines in the future. During the last 100 years, many natural
populations have been logged for industrial timber, agriculture, and economic development.
Currently, natural communities dominated by Q. gilva are rare, and most of the existing Q.
gilva are scattered in other forest communities with ancient trees. More than 80% of Q. gilva
populations occurred in the Fengshui forests or forests surrounding shrines and temples.
Most of these populations were very small, or even just individual ancient trees. These
populations have no natural regeneration of young adults and seedlings and thus seem to
have no future. Therefore, legislation is required to protect this endangered species, and
actively assist in the restoration of small populations. To date, Q. gilva has been listed as
vulnerable (VU) in the Korea Red Data Book [41], endangered (EN) or critically endangered
(CR) in several districts of Japan [14] and has also been described as a rare and endangered
tree species in China [15]. The assessment results show a large disparity between the local
government and the IUCN. Based on our global study, we suggested that the IUCN elevates
the threatened category of Q. gilva from LC to EN.

In this study, we analyzed the genome sequences of 65 individuals representing the
entire distributional range of Q. gilva. More than 15 million SNPs were identified, from
which we determined the phylogeny, population structure, and genetic diversity of Q. gilva.
Although the NJ and ML analyses showed considerable differences, both phylogenetic
trees showed that Q. gilva has a strong evolutionary path from southwestern China to
Central China, then to East China, and finally from the east coast of China to Japan and/or
South Korea (Figures 2 and S1). The same pattern has been detected in many taxa native
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to the Sino-Japanese Forest sub-kingdom, such as Cercidiphyllum japonicum [42], Quercus
glauca [43], and Asian butternuts (Juglans section Cardiocaryon) [44]. The characterized
genetic relationships among all individuals based on structure and PCA showed that the
populations of Yinzhou, Zhejiang (ZYZ), Yanling, Hunan (HYL), and Wuyuan, Jiangxi
(JWY) had the most distinctive genetic composition.

Quercus gilva exhibited a substantially lower genetic diversity (0.994 × 10−3) than Q.
acutissima (π = 8.7 × 10−3), Q. variabilis (π = 9.0 × 10−3), and Q. chenii (π = 7.2 × 10−3) at the
genome-wide level, which are species that belong to Quercus in East Asia [45]. Compared
with tree species from other genera in East Asia, Q. gilva exhibited genetic diversity of a
level similar to that of C. japonicum (mean π = 1.00 × 10−3) [42], and two or three times
lower than the living fossil Ginkgo biloba (π = 2.11 × 10−3) [46] and an endangered maple
Acer yangbiense (π = 3.13 × 10−3) [47].

Among the 22 populations, the very low level of genetic diversity in the populations
of Yinzhou, Zhejiang (ZYZ), Yanling, Hunan (HYL), Zherong, Fujian (FZR), and Jingning,
Zhejiang (ZJN) indicates a possibility of different demographical dynamics. The LD decay
was very slow for the FZR and ZJN populations, which did not decay to half of their
maximum value at the end of the distance. In contrast, the HYL and ZYZ populations
exhibited the fastest decay rates. The highest r2 of the HYL and ZYZ populations (r2 = 0.9)
suggested that these two populations are artificial cultivation populations, and the seeds
maybe from one individual. According to the genetic diversity and LD, a strong bottleneck
was detected in the small populations of FZR, ZJN, and JWY. Overall, the populations with
relatively high genetic diversity and large populations are suggested as the provenance of
seeds for artificial breeding, such as the populations from southwest China, Jeju Island of
South Korea, and Kyushu in Japan. It is important to highlight the limitations and risks of
using seeds from areas with different environmental conditions for restoration purposes.
Thus, we will continue to study the adaptive evolution of Q. gilva under the climate change
in the future to provide more detailed guidance on provenance applications.

5. Conclusions

Genetic diversity is the basis for evolutionary change and is critical for species to
adapt to changing climates and biotic interactions, including novel diseases [11]. Human-
mediated destruction and environmental changes disrupt population and community
dynamics, resulting in the loss of population genetic diversity and species extinction [48,49].
Based on this study, we confirmed that Q. gilva is an endangered (EN) species, regardless of
population survey or genetic evidence. In the future, we need to uncover the evolutionary
history, population vulnerability, and adaptive capacity under climate change for Q. gilva.

Based on a detailed survey of population status and the study of genetic diversity, we
could provide a more accurate assessment of the endangered status of species. This study
helps initiate the assessment of threatened categories of species combined with population
field survey data on genetic diversity. We suggested that in the future, a sixth criterion
regarding genetic diversity should be added to the IUCN criteria used to evaluate the
threatened category.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d15020230/s1, Figure S1: The maximum-likelihood (ML) phylo-
genetic tree of Quercus gilva; Figure S2: PCA (principal component analysis) of 65 individuals of Q.
gilva. The cycles with different colors represent the different populations. The details of abbreviation
codes for populations showed in Tables 2 and S1; Table S1: Information of each individual and popu-
lation used in our study, and the quality of sequencing. Table S2: All the information of population
status of Q. gilva; Table S3: Linkage disequilibrium decay measured by r2 in each population and
their position when LD decayed to half of their maximum value. References [14,19,50] are cited in
the Supplementary Materials.
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