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Kuźmiński, R.; Remoundou, I.;

Zawieja, B. Microarthropods Living

on the Endemic Tree Zelkova abelicea

(Ulmaceae) with Particular Attention

to Collembola Diversity. Forests 2022,

13, 195. https://doi.org/10.3390/

f13020195

Academic Editor: Pasi Rautio

Received: 30 December 2021

Accepted: 25 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Microarthropods Living on the Endemic Tree Zelkova abelicea
(Ulmaceae) with Particular Attention to Collembola Diversity
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Abstract: Zelkova abelicea is an endemic tree species growing in several localities in the mountainous
regions of Crete, Greece. To date, the microarthropod species associated with this tree species have
not been identified. Since Z. abelicea populations are isolated and fragmented, it was hypothesized
that the characteristics of microarthropod assemblages, particularly in the case of springtails (Collem-
bola), would vary and differ among localities. Moreover, rare microarthropod species that colonize
microhabitats not included in previous studies on Zelkova trees were expected to be recorded. Samples
were collected from the bark and twigs of Z. abelicea at eight localities in all main mountain ranges.
Among the collected material, Collembola were the most numerous (10,285), followed by Acari (2237)
and representatives of Psocoptera (422). The obtained material and statistical analyses showed that
the arthropod assemblages differed considerably at each experimental site, with the most distinct
assemblage characteristics observed at the Gerakari site on Mt. Kedros in central Crete. The most
numerous specimens were species of Collembola: Xenylla maritima (3844), Xenylla sp. 2 (maritima
complex) (3364) and Xenylla sp. 1 (maritima complex) (2631). A total of 33 Collembola species were
recorded, of which 19 had not been previously reported in Crete. Among them, 11 species were likely
new to science and will be the subject of separate taxonomic studies.

Keywords: Collembola; Arachnida; Insecta; biodiversity; ecology of arthropods; zoogeography

1. Introduction

Relict tree species were originally widely distributed on Earth thousands or even
millions of years ago. As a result of changing climatic and environmental conditions,
they are presently found only sporadically in places where they encounter appropriate
conditions for their survival [1]. Examples of such relict trees include species belonging
to the genera Aesculus, Laurus, Liquidambar, Juglans, Parrotia, Pterocarya, Rhododendron and
Zelkova [2,3].

Relict trees play a tremendous role from a scientific perspective and for effective
biodiversity preservation [4,5]. Many relict tree species are relatively rare, and as such,
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they are under legal protection in some countries. In turn, a considerable number of old
that constitute unique microhabitats remain, thus promoting conducive conditions for
the preservation of biodiversity [6]. These microhabitats, sometimes referred to in the
literature as “tree-related microhabitats” [7,8], shelter a wide range of organisms, from
fungi to bryophytes, invertebrates, birds and mammals.

The genus Zelkova (Ulmaceae) is a relict genus from the so-called Arcto-Tertiary ge-
oflora [9], whose members were important components of forests in the Northern Hemi-
sphere during the Paleogene. The six extant species are distributed throughout western
and eastern Asia (Caucasus: Z. carpinifolia (Pall.) Koch), East Asia (Z. serrata (Thunb.)
Makino) and China (Z. schneideriana Hand.-Mazz and Z. sinica Schneid.), although two
found are on Mediterranean islands (Sicily, Italy: Z. sicula Di Pasq., Garfì & Quézel, and
Crete, Greece: Z. abelicea (Lam.) Boiss.). Habitat loss, logging, increased drought periods
and limited reproduction represent major threats for these species. Both Mediterranean
species have been assigned a high threat level according to the IUCN Red List of threatened
species [10,11].

Some Zelkova species have been the subject of entomological studies, with the most
spectacular results presented by Barbagallo [12], who described Zelkovaphis trinacriae, which
is a new Eriosomatine aphid genus and species that lives on Z. sicula on Sicily. In turn,
Mazzeo et al. [13] presented a list of 23 insect species of Hemiptera, while Campo et al. [14]
summed up the knowledge on insect and fungal species associated with this tree species
from Sicily. Hsin-Ting et al. [15] inspected insects at monthly intervals and recorded
insects that fed on or utilized Z. serrata in a 100-hectare investigation plot in Pingtung
County (Southern Taiwan). A total of 91 insect species were recorded, including Coleoptera,
Hemiptera, Hymenoptera, Isoptera, Lepidoptera, Orthoptera and Psocoptera. With regard
to feeding guilds, 32 species were recognized as defoliators, 12 species were recognized
as sap suckers, 3 species were recognized as stem borers, 31 species were recognized as
dead wood feeders, and 13 species utilized this tree species in ways other than the above
categories. Ohsawa [16] conducted investigations to elucidate the life cycle and ecological
characteristics of the beetle Trachys yanoi, an important pest of Z. serrata in Japan. Two
new species of eriophyoid mites (Tegolophus zelkofoliae and Rectalox dorsoenodis) were found
on Z. carpinifolia in Golestan Province, Iran. Both new species were vagrants on the leaf
underside, and no damage was observed on the infested plants [17].

Zelkova abelicea (Lam.) Boiss is an endemic species growing in several localities in
all mountainous regions of Crete above 900 m a.s.l. [18]. A majority of specimens show
stunted growth and a dwarfed, bushy plant habit primarily due to browsing by goats. Tree
specimens, which are much less common, reach 15–20 m in height [19]. They frequently
grow in the vicinity of abandoned shepherd shelters and have historically been pollarded
to use the leaves for summer forage [20,21].

To date, specific research has not been conducted on invertebrates living on Z. abelicea.
Only two Phytoseiidae mites (Acari) have been recorded [22], and one Hymenoptera
species has been recorded [23]. This research gap encouraged the authors to initiate a series
of studies focused on assemblages of invertebrates colonizing this endemic tree species.

Populations of Z. abelicea on Crete are situated in mountainous regions. In Crete, the
five main mountain ranges are isolated from each other by lowland areas. Thus, trees in one
locality have little to no contact with those growing in other sites, which is supported by
the limited genetic exchange among Z. abelicea trees between mountain ranges and, in some
situations, between populations within a mountain [24]. Thus, our research hypothesis was
that the characteristics of microarthropod assemblages, especially springtails (Collembola)
on Z. abelicea trees, will vary and differ from locality to locality. The aim of this study was
to determine the assemblage characteristics in each locality. Then, based on these results,
we conducted a statistical analysis to identify the diversity of species of each arthropod
group for every locality. Considering that some arthropod species are known to be closely
associated with specific tree species, we expected to record very rare arthropod species or
to potentially find species new to science.
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2. Methods
2.1. Field Studies

The material was collected at eight experimental sites distributed over the entire range
of Z. abelicea on Crete (Figure 1).
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Figure 1. Sampled localities (red dots) on Crete (Greece) with Zelkova abelicea trees.

1. Omalos, Levka Ori (Latitude 35, 31901; Longitude 23, 91871), Altitude—1160 m
a.s.l., topology: Slope, microhabitat: Bark of arborescent trees, date—21 May 2019,
Coll. D. Ghosn;

2. Niato, Levka Ori (35, 287527; 24, 145503), 1215 m a.s.l., doline, branches of dwarfed
individuals, 21 May 2019, Coll. D. Ghosn;

3. Impros, Levka Ori (35, 270546; 24, 15315), 1175 m a.s.l., slope, bark of arborescent
trees, 21 May 2019, Coll. D. Ghosn;

4. Gerakari, Mt. Kedros (35, 194829; 24, 606713), 1255 m a.s.l., slope, bark of arborescent
trees, 11 October 2018, Coll. D.J. Gwiazdowicz;

5. Rouvas, Psiloritis Mountains, (35, 164333; 24, 922794), 1320 m a.s.l., slope, bark of
arborescent trees, 10 October 2018, Coll. D.J. Gwiazdowicz;

6. Viannou, Dikti Mountains, (35, 064291; 25, 469778), 1320 m a.s.l., slope, bark of
arborescent trees, 9 October 2018, Coll. D.J. Gwiazdowicz;

7. Katharo, Dikti Mountains, (35, 148004; 25, 567558), 1160 m a.s.l., slope, bark of arbores-
cent trees, 9 October 2018, Coll. D.J. Gwiazdowicz;

8. Thripti, Thripti Mountains, (35, 080588; 25, 887408), 1150 m a.s.l., doline, branches of
dwarfed individuals, 14 May 2019, Coll. D. Ghosn.

At each sampling site, samples were collected from five trees (one tree—one sample)
growing at a distance of a few to tens of meters apart. A sample of the outer trunk bark
layer was cut off with a knife from well-developed arborescent trees. In the case of dwarfed
specimens, branches were cut off with pruning shears. It was due to the fact that the bark
on the trunk of young or dwarf trees is smooth and thin, while on old and large trees it is
thick, cracked and frequently colonized by mosses and lichens (Figure 2). The collected
material was placed in paper bags. The weight of each sample ranged from 200 to 250 g.
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Figure 2. Zelkova abelicea trees with microhabitats for invertebrates. (A) Large trees (Omalos).
(B) Dwarfed individuals heavily browsed by goats (Thripti). (C) Bark of large trees (Gerakari).
(D) Bark of browsed individuals with lichens (Thripti). (E) Bark of large tree covered by sev-
eral species of lichens form the genera Xanthoria, Pleurostica and Physconia (Gerakari) (Photos: G.
Kozlowski—(A–C,E); Hans-Rüdiger Siegel—(D)).

2.2. Laboratory Procedures

The collected samples were placed into Tullgren funnels for 72 h and extracted in 96%
ethanol. The extracted arthropods were classified into several groups of arthropods, e.g.,
spiders, mites, springtails and insects. For this purpose, a Zeiss Stemi 2000 stereoscopic
microscope was used.

At this stage of the study, species determinations were limited to the most numer-
ous group, which were springtails (Collembola). A Nikon Eclipse E600 phase contrast
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microscope was used to identify the Collembola. The extracted specimens of spring-
tails were cleared in Nesbitt’s fluid and slide-mounted in a Hoyer medium to prepare
semi-permanent microscopic slides necessary for taxonomic analysis. The taxonomic
identification of Collembola was carried out based on the following papers: Gisin [25],
Stach [26,27], Massoud [28], Ellis [29], Kaprus’ & Weiner [30], Jordana et al. [31], Pomorski
& Skarżyński [32], Simon Benito & Deharveng [33], Fjellberg [34,35], Pomorski [36], Bret-
feld [37], Carapelli et al. [38], Potapov [39], Thibaud et al. [40], Gioia Cipola et al. [41],
Skarżyński et al. [42] and Lafooraki et al. [43]. For each site, the number of specimens found
for each taxonomic group was counted. In the case of Collembola, the number of recorded
species was also provided.

Among the insect material, Acari, Pseudoscorpionida, Myriapoda, and Insecta speci-
mens are stored in the collection of Poznan University of Life Sciences at the Department
of Forest Entomology and Pathology, Collembola specimens are stored in the collection
of the University of Wrocław at the Department of Invertebrate Biology, Evolution and
Conservation, and Araneae are stored in the collection of Adam Mickiewicz University at
the Faculty of Biology, Poznań, Poland.

2.3. Statistical Analyses

A cluster analysis [44,45] performed to detect groups of similar sites was run on a
Bray-Curtis distances matrix. This method analyzed the Hellinger-transformed the number
of specimens using the Manhattan distance matrix and the Ward method. The Hellinger
distance is widely used in ecological studies [46]. Cluster analysis is a numerical method
that does not consider trends found in community data. Therefore, to compare the species
diversity among experimental sites, a principal coordinate analysis (PCoA) [47] based on
Bray-Cutris distances was applied. Since the focus of the study was to compare localities in
terms of Collembola species, only the ordination method was used to analyze variation
throughout arthropod assemblages. Collembola species that preferred a given habitat were
identified using multilevel pattern analysis [48]. To describe the Collembola communities,
Simpson’s diversity index [49], Pielou’s evenness index [50] and the dominance index [51]
were estimated for each location. To verify whether the number and population size of
a species were dependent on the geographical location or altitude of the sampling site, a
Mantel test [45] was applied to compare the distance matrix established for geographical
coordinates and altitude for the collected samples with the community dissimilarity matrix.
All calculations were performed in the R 3.6.1 environment [52] using the vegan [53],
indicator species [48], and stats packages.

3. Results
3.1. Diversity of Microarthropod Assemblages in Separate Zelkova abelicea Localities

The class Collembola had by far the highest number of specimens (10,285) in the
samples (Table 1). Representatives of 11 orders belonged to the class Insecta, among
which the most numerous were Psocoptera (422), Hymenoptera (245) and Thysanoptera
(163). Within the class Arachnida, the most numerously represented orders were Acari
(2237) and Araneae (212), while the least numerous order was Pseudoscorpiones (20). The
highest mean number of specimens per sampling site was reported for Collembola (258),
while the lowest number was reported for Lepidoptera (0.05) and Rhaphidioptera (0.03).
Representatives of these two orders of insects were detected only sporadically, with a
maximum of one specimen per sampling site (Table 1).
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Table 1. Total number of specimens in each arthropod group for every sampling site in each of the five mountain ranges. The average number of specimens per tree
with the standard error as well as the minimum and maximum are shown.

Systematics/Mountains Levka Ori Kedros Psiloritis Dikti Thripti

Group of Arthropods/
Localities Omalos Niato Impros Gerakari Rouvas Viannou Katharo Thripti

Mean ± SE (min, max)
Number of Specimens
per Tree

Arachnida Araneae 109 16 10 15 12 40 2 8 5.3 ± 1.6 (0, 52)
Pseudoscorpiones 2 0 4 5 0 0 0 9 0.5 ± 0.2 (0, 6)
Acari 593 44 55 1248 45 61 48 143 55.9 ± 16.9 (0, 427)

Myriapoda 7 0 0 4 0 0 0 0 0.3 ± 0.2 (0, 5)
Collembola 1521 84 951 5325 40 283 355 1726 258.0 ± 76.1 (0, 2279)
Insecta Coleoptera 2 0 0 22 1 8 1 17 1.3 ± 0.5 (0, 15)

Dermaptera 0 0 5 0 0 0 0 0 0.1 ± 0.1 (0, 3)
Diptera 0 0 0 8 0 0 5 1 0.4 ± 0.2 (0, 8)
Entognatha 12 0 20 25 0 0 3 15 1.9 ± 0.8 (0, 20)
Hemiptera 4 0 0 4 2 1 1 7 0.5 ± 0.2 (0, 3)
Heteroptera 0 0 0 3 1 0 1 9 0.4 ± 0.2 (0, 9)
Hymenoptera 190 0 25 27 0 0 2 1 6.1 ± 3.3 (0, 102)
Lepidoptera 0 0 0 1 0 0 1 0 0.05 ± 0.03 (0, 1)
Psocoptera 122 13 18 53 65 37 36 78 10.6 ± 2.1 (0, 51)
Rhaphidioptera 0 1 0 0 0 0 0 0 0.03 ± 0.03 (0, 1)
Thysanoptera 13 15 16 20 12 13 54 20 4.1 ± 1.0 (0, 30)

TOTAL 2575 173 1104 6760 178 443 509 2034 345.3 ± 86.8
(0, 2279)

Mean ± SE (min,
max) number of
specimens per tree

515.0 ± 120.9
(167, 844)

34.6 ± 12.35
(0, 64)

220.8 ± 38.0
(99, 294)

1352.0 ± 402.3
(435, 2501)

35.6 ± 14.7
(0, 64)

88.6 ± 38.1
(0, 189)

107.8 ± 24.3
(47, 183)

408.0 ± 250.4
(29, 1396)
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The variation in the number of arthropod specimens per sampled tree is represented
in Figure 3 for every sampling locality. The highest number of specimens was observed at
the Gerakari site (per tree average: 1352), where the scatter in the number of specimens in
the sampled trees was also the greatest (min: 435, max: 2501). The three sites in the Levka
Ori showed strong variations in terms of the numbers of specimens. Indeed, Omalos had
the highest number of specimens per sampled tree (average: 515.) and a heterogeneous
distribution in the number of specimens per sampled tree (min: 167, max: 844). Impros had
an intermediate value (average: 221, min: 99, max: 294), while Niato had the lowest number
of specimens (average: 35, min: 0 max: 64). The two sites from Dikti were similar in terms
of sample sizes per tree. However, in Katharo, fewer samples predominated (the graph
is wider at the bottom), whereas in Viannou, samples with a higher number of specimens
predominated. Rouvas was similar to Niato and had small samples. In Thripti, the scatter
in the number of specimens in the sampled trees was large because one sample included
1396 specimens while the other four samples had between 29 and 290 specimens. Moreover,
certain samples from Niato, Rouvas and Viannou had no microarthropods at all (Table 1).
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representative of the frequency of data points.

To more accurately illustrate the observed trends in terms of similarity of the mi-
croarthropod community, an ordination method based on PCoA distances was applied,
with the Hellinger method used to transform data (Figure 4). The centroids and overlapping
areas form four groups of sites that are similar in terms of their microarthropod communi-
ties: (1) Impros, Niato and Viannou, (2) Thripti and Katharo, (3) Omalos and Rouvas, and
(4) Gerakari, which presented a centroid separate from the others (relation to the first axis),
although the site had certain commonalities with several other sites. The highest number
of specimens by far as well as the highest number of microarthropod groups (14 out of 16)
were recorded in Gerakari. Samples from Gerakari were quite close together on the PCoA
graph, especially along the first axis, which shows their great similarity. Thripti accounted
for a very large area, which is consistent with the results presented in Table 1, with as
many as 12 out of 16 microarthropod groups found at this site, although the samples were
spaced apart in relation to both axes (they are not very similar). Rouvas accounted for
the smallest area and was contained completely within Thripti and Omalos. Thus, all of
the microarthropod orders found at Rouvas were also found at the two other sites. At the
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two sites in the Dikti Mountains, the total number of microarthropod groups was 12 in
Katharo and 7 in Viannou. All the orders found in Viannou were also recorded in Katharo.
The number of specimens in most microarthropod groups was greater in Viannou than
in Katharo except for Collembola and Thysanoptera. For the three sites in the Levka Ori,
the lowest number of specimens was recorded in Niato, which also presented the lowest
number of microarthropod groups (6), whereas 11 and 8 arthropod groups were found in
Omalos and Impros, respectively, and these groups also presented a much higher number
of specimens. Samples from Niato and Omalos were spaced apart with regard to the first
axis but spaced quite close together with regard to the second axis. Samples from Impros
were similar (close to each other) along the first axis and dissimilar (far apart) along the
second axis.
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3.2. Diversity of Collembola Communities on Zelkova abelicea Trees

In the collected material, Collembola was by far the most numerous group of mi-
croarthropods. Therefore, this class was analyzed in more detail. A total of 33 species were
recorded, among which 19 have not been previously reported from Crete [29,32,43,54–59].
Among these 19 species, 11 are likely new to science and will be the subject of separate
taxonomic studies (Table 2). Three species of the genus Xenylla were represented in the
greatest number. Xenylla maritima (3844) was dominant, followed by Xenylla sp. 2 (mar-
itima complex) (3364) and Xenylla sp. 1 (maritima complex) (2631) (Table 2). Most species
were represented by single specimens. Due to the small population size and the presence
of juvenile forms, some specimens were only identified at higher taxonomic units, e.g.,
Anurophorinae 1 and Anurophorinae 2.
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Table 2. List of Collembola species in systematic order with the number of recorded specimens per site. Additionally, the average number of species per tree
(±standard error, minimum and maximum), the average number of specimens per tree (±standard error, minimum and maximum), the Simpson index (measure of
diversity), the Pielou Index (measure of evenness) and the dominance index are shown. * Species new to the fauna of Crete, ** species likely new to science.

Mountain Levka Ori Kedros Psiloritis Dikti Thripti
Site Omalos Niato Impros Gerakari Rouvas Viannou Katharo Thripti

1. Hypogastrura cf. gisini ** 2
2. Xenylla sp. 1 (maritima complex) ** 1436 40 933 25 139 58
3. Xenylla sp. 2 (maritima complex) ** 38 24 8 3233 6 55
4. Xenylla maritima 1 15 1759 132 354 1583
5. Protanura sp. ** 1
6. Deutonura sp. ** 2
7. Endonura sp. ** 1
8. Friesea cf. cassagnaui ** 1
9. Friesea sp. ** 4

10. Pseudachorutella sp. ** 2
11. Protaphorura aurantiaca 4
12. Thalassaphorura franzi * 2 1
13. Metaphorura affinis 1
14. Anurophorinae 1 * 2 1
15. Anurophorinae 2 * 1
16. Folsomia ksenemani 2 1
17. Folsomia quadrioculata * 36
18. Hemisotoma pontica 6
19. Isotoma sp. 2
20. Isotomurus fucicolus * 3
21. Uzelia cf. kuehnelti ** 8 4 7 5 7 1 10
22. Vertagopus arboreus * 6
23. Vertagopus cf. persicus ** 72
24. Entomobrya handschini 25
25. Entomobrya multifasciata 4 1 77 3 5
26. Lepidocyrtus lanuginosus 1
27. Lepidocyrtus cf. lignorum 3
28. Lepidocyrtus sp. 1 2
29. Lepidocyrtus sp. 2 2
30. Orchesella taurica * 1 96
31. Pseudosinella octopunctata 6 1
32. Seira ferrarii * 5 4 14
33. Sminthurinus alpinus bisetosus 1
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Table 2. Cont.

Mountain Levka Ori Kedros Psiloritis Dikti Thripti
Site Omalos Niato Impros Gerakari Rouvas Viannou Katharo Thripti

TOTAL SPECIES 9 5 5 27 4 6 2 7
TOTAL SPECIMENS 1521 84 951 5325 40 283 355 1726

Average number of species 4.00 ± 0.84
(2, 6)

1.80 ± 0.58
(0, 3)

2.00 ± 0.45
(1, 3)

9.60 ± 3.11
(4, 21)

2.00 ± 0.84
(0, 4)

1.4 ± 0.6
(0, 3)

1.20 ± 0.20
(1, 2)

3.60 ± 0.68
(2, 6)

Average number of specimens 304.2 ± 117.4
(24, 661)

16.8 ± 6.04
(0, 33)

190.2 ± 41.38
(57, 273)

1065 ± 392.4
(105, 2279)

8 ± 3.51
(0, 18)

56.6 ± 31.34
(0, 133)

77 ± 24.06
(32, 165)

346.4 ± 256.2
(16, 1359)

Simpson Index 0.18 ± 0.11
(0.01, 0.61)

0.37 ± 0.13
(0.0, 0.53)

0.05 ± 0.02
(0.0, 0.11)

0.47 ± 0.12
(0.07, 0.8)

0.52 ± 0.05
(0.43, 0.57)

0.23 ± 0.21)
(0.01, 0.65)

0.0 ± 0.002
(0.0, 0.2)

0.32 ± 0.12
(0.04, 0.77)

Pielou’s Index 0.25 ± 0.13
(0.03, 0.72)

0.82 ± 0.05
(0.75, 0.92)

0.19 ± 0.04
(0.11, 0.23)

0.44 ± 0.09
(0.13, 0.7)

0.77 ± 0.04
(0.69, 0.83)

0.37 ± 0.30
(0.06, 0.98)

0.09 ± NA
(0.09, 0.09)

0.48 ± 0.14
(0.11, 0.88)

Dominance Index 0.82 ± 0,11
(0.39, 0.99)

0.63 ± 0,13
(0.47, 1.00))

0.95 ± 0.02
(0.89, 1.00)

0.53 ± 0.12
(0.2, 0.93)

0.48 ± 0.05
(0.43, 0.57)

0.77 ± 0.21
(0.35, 0.99)

1.0 ± 0.004
(0.98, 1.00)

0.68 ± 0.12
(0.23, 0.96)
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The highest number of Collembola species (27) and the greatest number of specimens
by far (5325) were recorded in Gerakari, followed by Omalos (9 spp., 1521) and Thripti
(7 spp., 1726) (Table 2). Katharo had the lowest number of species (2 spp.), while Rouvas
had the lowest number of specimens (40). Within the Levka Ori, Omalos stands out as
having a higher number of Collembola species compared to the two other sites (9 spp. and
5 spp.). Niato and Impros not only had lower biodiversity than Omalos but also had a
lower number of specimens (Table 2, Figure 5). All three aforementioned sites shared three
common species, although this species differed significantly in terms of its population size
among the sites. The two sites in Dikti had a similar mean number of species per sample
but showed differences in the total number of species, with six in Viannou and only two
in Katharo. Only one species was shared between these two sites. None of the species
was shared among all sampling sites; however, Uzelia cf. kuehnelti was found at all sites
except for Katharo and all three Xynella species were found at all sites except two (Table 2).
Twenty-two species occurred only once, among which all (except two) were restricted to
the trees at Gerakari.
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The cluster analysis of similarities showed that Collembola assemblages in Gerakari
differed markedly from all the other assemblages. The sites in Omalos and Impros, which
are located in the Levka Ori Mountains, showed considerable similarity, whereas the Niato
site, which is geographically very close to Impros, was completely different and positioned
closer to Thripti. It may be related to the character of the microhabitat from which the
samples were collected. In both Niato and Thripti, twigs were harvested, while bark was
harvested from trunks in other sites. In turn, the Collembola assemblages at the two sites
located in the Dikti Mountains (Katharo and Viannou) differed slightly (Figure 6).

The PCoA analysis for Collembola showed that Gerakari stands out compared to all
other sites due to the presence of many species that are not found elsewhere. In addition,
Katharo did not share a common area with any of the other sites because only two species
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were recorded there, making the site difficult to position. Most of the other sites overlapped.
Thripti and Impros were almost fully encompassed in Niato. Impros, Niato and Omalos had
a large common area (Figure 7). Moreover, these areas overlapped with those distinguished
by samples from Rouvas and Viannou. For these areas, one common indicator species
was identified: Xenylla sp. 1 (maritima complex) (Table 3). Similar to the cluster analysis,
samples from Katharo were located closest to the Viannou site, which confirmed their
considerable similarity.
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Figure 7. Centroids obtained from the PCoA analysis showing the numerical diversity of Collembola
in the study sites (% of total variability: PCoA1—56%, PCoA2—21%). The center of each centroid is
indicated by a lettered square representing each study site (i.e., O: Omalos, N: Niato, I: Impros, G:
Gerakari, R: Rouvas, V: Viannou, K: Katharo, T: Thripti).
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Table 3. Indicator species for localities based on a multilevel pattern analysis.

Stat p Value

Group Gerakari
Orchesella taurica Stach, 1960 0.809 0.0020
Lepidocyrtus cf. lignorum (Fabricius, 1793) 0.742 0.0120
Vertagopus cf. persicus Potapov, Yoosefi & Shayanmehr, 2020 0.717 0.0143

Group Gerakari + Rouvas
Entomobrya multifasciata (Tullberg, 1871) 0.632 0.0150

Group Katharo + Thripti
Xenylla maritima Tullberg, 1869 0.682 0.0037

Group Gerakari + Niato + Thripti
Xenylla sp. 2 (maritima complex) 0.621 0.0160

Group Impros + Niato + Omalos + Rouvas + Viannou
Xenylla sp. 1 (maritima complex) 0.743 0.0003

The multilevel pattern analysis identified the indicator species shared by the highest
number of sampling sites. These indicator species are the most numerously represented
species found in many localities and in many samples (Table 3).

A Mantel test was conducted to compare the distance matrix established for the geo-
graphical coordinates and altitude where the samples were collected with the community
dissimilarity matrix. The test (r = 0.2329, p = 0.116) showed no dependence between the
community dissimilarity matrix and distances between locations matrix (calculated from
the longitude and latitude as well as the elevation of a given site). Thus, the occurrence of
Collembola species was not found to be dependent on the location or altitude of a given site.

4. Discussion

Arthropods are known to contribute to a very important fraction of global biodiver-
sity [60]. However, limited research has focused on this group of organisms. Moreover,
even fewer studies have investigated microarthropod communities, especially Collembola
communities living on trees or associated with tree microhabitats in the Mediterranean,
let alone Crete [61,62]. Our study provides a small but significant addition to this field of
study, as corroborated by the 19 recorded Collembola species that had never been reported
for Crete, which included 11 species, i.e., almost one-third of the recorded species) that are
likely new to science.

Several studies have shown that the presence, range or continuity and connection of
some species, groups or even populations of organisms distributed on Crete are highly
influenced by the strong topographical and/or geological history and structures present on
the island [24,63–70]. The character of arthropod assemblages is also influenced by natural
conditions, e.g., the host plant, which creates specific microhabitats [71]. The influence of
such factors was also observed in our study, at least for Collembola, with each Z. abelicea
locality presenting a specific assemblage. Indeed, longitudinal, latitudinal or altitudinal
trends were not observed for the Collembola species, which suggests that the distribution
and diversity of Collembola assemblages growing on Z. abelicea trees are not influenced
by macroenvironmental conditions (e.g., precipitation, temperature, and drought) or by
between-site epiphytic lichen and bryophyte community differences. In fact, the diversity
and distribution of epiphytic lichens and bryophytes growing on Z. abelicea were found
to differ along a longitudinal gradient, which was likely related to differences in regional
climatic patterns [72–74].

In addition, the cluster analysis (Figure 6) revealed that sites situated within the same
mountain range showed greater similarity than sites situated in other mountain ranges.
A striking exception to this statement was observed for Niato, which was dissimilar to
all Levka Ori sites despite being geographically very close to Impros but similar to the
easternmost site Thripti. A possible explanation is that both Niato and Thripti were the
only sites where samples were collected from dwarfed Z. abelicea communities and the
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only sites situated in flat dolines, whereas samples from all other sites were gathered from
arborescent trees situated on sloped areas. Therefore, we can conclude that at least in the
case of arborescent trees or trees situated on slopes, the absence of a continuous Z. abelicea
population between mountains associated with the complex topography of Crete seems to
be a determining factor for Collembola assemblages. Further and more in-depth analyses
should be undertaken to investigate this matter.

Based on the PCoA and cluster analysis, the most different character of assemblages
was recorded at the Gerakari site on Mt. Kedros, where the highest number of species
(27) and specimens of Collembola (5325) were recorded. The multilevel pattern analysis
identified the indicator species for this site, including the xeroresistant species Orchesella
taurica, which lives in forests and open sites in SE Europe [26,75,76]; the eurytopic species
Lepidocyrtus cf. lignorum, which is widely distributed in the Holarctic [35]; and the species
Vertagopus cf. persicus, which is likely new to science. Indeed, the Gerakari site on Mt.
Kedros proved to be the richest in terms of the number of specimens collected as well as
the number of arthropod groups and Collembola species found, and it showed striking
differences in its arthropod population compared to all other sites. Indeed, from the
27 Collembola species recorded at Gerakari, twenty were found nowhere else, which
indicates the uniqueness of the site and its dissimilarity with the other sampling sites.
These results can be assessed based on the study by Fazan et al. [77], who found a richer
diversity of epiphytic bryophytes on Z. abelicea growing at the same study site on Mt.
Kedros. Although the reasons behind these differences exceed the scope of the present
article, some hypotheses can be proposed. Indeed, arthropod communities, including
Collembola, are known to be very sensitive to a multitude of different factors, including
microhabitat conditions [78–80], vegetation type and plant richness [81–83], landscape
heterogeneity [84] and land-use practices, such as grazing [84–92], which are known to
impact arthropod communities. All of these factors, and many more, could explain to some
extent the variations found between study sites in our experiment.

Based on the analyses, such as the PCoA, we can state that the most stable assemblage
occurred at the Omalos site, which presented large, monumental trees with trunks and
branches that were abundantly covered with lichens and bryophytes. At the other sites,
the trees were smaller and occasionally grew as low shrubs that were nibbled upon by
goats. This obviously determined the richness of the microhabitats and, as a consequence,
the species richness of microarthropods and the different characteristics of the assemblage.
Moreover, the three other xeroresistant species should be highlighted: Entomobrya multifas-
ciata, which was characteristic of the Gerakari and Rouvas sites and is common in forests
and open sites in Palearctic [35,76]; Xenylla maritima, which distinguished the Katharo and
Thripti sites and has been recorded from mosses, lichens and bark in Europe and New
Zealand [42]; and finally, Xenylla sp. 1 (maritima complex), which distinguished Impros,
Niato, Omalos, Rouvas and Viannou sites and is probably new to science.

The discovery of nineteen species of Collembola new to the fauna of Crete, including
eleven that are likely new to science, showed how much new information can be provided
by the study of specific microhabitats, which was the tree Z. abelicea in our study case.
The research conducted thus far in Crete, although extensive, has focused mainly on soil
and litter assemblages [29,55–58]. The results of the current taxonomic research on the
abovementioned species that are likely new to science will be published in separate works.
These species may provide a basis for a deeper consideration of the specificity of the
Collembola assemblages associated with Z. abelicea.

5. Conclusions

At each site where Z. abelicea trees were found, a different characteristic of microarthro-
pod assemblages was recorded. Among the collected material, the most numerous groups
of organisms were Collembola (10,285), Acari (2237) and representatives of Psocoptera
(422). The analyses focused on Collembola showed that the site at Gerakari (Mt. Kedros)
stood out in terms of the species assemblage. Moreover, relatively rare species, as well as
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eleven species likely new to science, were recorded, highlighting the specific character and
value of Collembola assemblages that colonize endemic Z. abelicea trees. The observation of
19 previously unrecorded species on Crete species and 11 species likely new to science and
the results of these pilot studies justify the need for further research on the microarthropods
colonizing this unique endemic tree.
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